контроль прочности бетона
Определение прочности бетона
Определение прочности бетона – это обязательное условие контроля качества железобетонных изделий при их производстве. От прочности бетона зависит безопасность и срок эксплуатации любой железобетонной конструкции. На прочность бетона влияет много факторов, начиная от качества используемых для изготовления материалов, заканчивая соблюдением технологических требований к процессу производства. Прочность бетона определяет его маркировку, под которой состав поступает в продажу. Например, марка М400 свидетельствует о том, что максимальная нагрузка, выдерживаемая материалом, составляет 400 кг/см2.
Популярные товары
Электронный склерометр ОНИКС-2.5 предназначен для оперативного измерения прочности и однородности бетона методом ударного импульса по ГОСТ 22690. Прибор…
Электронный склерометр ОНИКС-2.6 предназначен для контроля прочности бетона и однородности бетона методом ударного импульса по ГОСТ 22690 и других материалов…
Наиболее функционально насыщенная версия ультразвукового прибора. Содержит полностью цифровой тракт с функцией визуализации принимаемого сигнала. Прибор…
Испытание бетона на прочность подразумевает приложение к нему контрольной нагрузки, направленной на разрушение целостности его структуры. Для данных испытаний используют контрольные образцы либо производят отбор проб бетона непосредственно из обследуемой конструкции.
Методы определения прочности бетона
Проводить определение прочности бетона в России можно только с учетом нормативов, установленных стандартом ГОСТ 18105-2010. Классификация используемых методов подразумевает деление на три подгруппы.
- Разрушающие. Испытание бетона в этом случае проводят с использованием контрольных образцов, подвергающихся твердению в одинаковых с конструкцией условиях, либо изымаемых непосредственно из бетонного монолита после достижения им необходимых показателей твердости. Эти методы определения прочности бетона считаются наиболее точными.
- Неразрушающие косвенные. К этой категории относят ультразвуковые исследования (по ГОСТ 17624-2012), методы упругого отскока и ударного импульса (ГОСТ 22690-2015). Важно отметить, что эти методы названы так потому что прочность оценивают косвенно, через другой параметр, измеряя, например скорость ультразвука, а по ней вычисляя прочность на основании установленных экспериментально зависимостей. Эти методы определения прочности бетона без предварительно градуировки могут дать погрешность до 30…50%, их нельзя использовать для вычислений, требующих достоверности и точности получаемых значений без корректировок результатов на основе прямых методов.
- Неразрушающие прямые. Испытание бетона в этом случае можно выполнять одним из двух методов. Первый из них предусматривает отрыв заделанного в бетон металлического анкера и измерение необходимой для этого нагрузки создаваемой при помощи специального оборудования. Второй – основан на измерении усилия, прилагаемого для скалывания участка внешнего ребра бетонной конструкции.
Все замеры и испытания, в рамках которых производится определение прочности бетона, подразумевают использование специальных инструментов и приборов, позволяющих гарантировать точность выполняемых процедур. Именно аппаратные измерения дают наиболее достоверный результат и позволяют выполнять все необходимые манипуляции в кратчайшие сроки и без остановки процессов строительства и ведения других работ на объекте.
Приборы серии ОНИКС для контроля прочности бетона
Современные приборы для определения прочности бетона серий ОНИКС и ПУЛЬСАР, выпускаемые компанией “Интерприбор”, ориентированы на использование всех имеющихся методов определения прочности и прекрасно подходят для проведения испытаний и в лаборатории и на строительной площадке методами скола ребра, отрыва со скалыванием, по скорости прохождения ультразвука и методом ударного импульса.
Использование высокоточных технических средств гарантирует высокую скорость и точность при фиксации параметров прочности. Это позволяет быстро получать достоверные результаты при определении прочности бетона непосредственно на исследуемом объекте без разрушения бетонного монолита.
Независимая Экспертиза Волгоград
Почерковедческая экспертиза
Почерковедческая экспертиза – один из видов идентификации личности.
Экспертиза оконных блоков
Пластиковые окна – технически довольно сложный продукт, поэтому проверить его качество может только квалифицированный специалист.
Экспертиза качества товаров
Проверка качества товаров народного потребления ( обувь, одежда, кожевенно-меховые, спортивные, галантерейные и пр. товары )
Финансово-экономическая экспертиза
Финансово-экономические экспертизы назначаются для решения задач, касающихся финансовой деятельности предприятий, соблюдения законодательных актов.
Оценка недвижимости
Сегодня понятие оценочной деятельности подразумевает, в большинстве случаев, оценку рыночной стоимости недвижимости.
Неразрушающие методы контроля прочности бетона
Сегодня неразрушающие методы контроля прочности бетона широко используются не только в России, но и в странах СНГ – везде, где ведется монолитное строительство ( Белоруссия, государства Средней Азии и др. ). Востребованы эти методы и в странах Западной и Восточной Европы, США, Канаде и т. д. Их развитию тоже уделяется большое внимание – периодически проводятся международные конференции, посвященные неразрушающему контролю ( НК ). Например, в этом году такая конференция прошла в США, три года назад – в Германии. На Западе такие приборы используются в основном при реконструкции сооружений.
Раньше, когда строительство в России велось в основном с применением сборного железобетона, неразрушающие методы внедрялись непосредственно на заводах. Особенно много в этом направлении было сделано Министерством строительства и руководством «Главзапстроя», обслуживающего западные районы страны. В Литве на всех заводах по производству сборного железобетона использовались неразрушающие методы контроля прочности.
При производстве сборного железобетона заводы располагались недалеко от объектов строительства. На каждом заводе была лаборатория, где прочность бетона определялась с помощью традиционных методов. Такая практика позволяла эффективно осуществлять контроль качества бетонных конструкций. Сегодня популярность неразрушающих методов контроля прочности бетона в большой степени обусловлена увеличением числа зданий из монолитного железобетона.
При использовании монолитного железобетона цементную смесь приходится транспортировать на значительные расстояния. При этом почти всегда на один и тот же крупный объект смесь поставляют несколько производителей. Соответственно лаборатории по контролю качества бетона приходится устраивать не только на предприятиях, но и непосредственно на объектах, а специалистам – контролировать готовые бетонные конструкции.
Большинство организаций не могут или не хотят устраивать на своих объектах такие лаборатории. Поэтому использование неразрушающих методов контроля прочности бетона оказывается крайне целесообразным. Особенно это актуально для России, где в отличие от большинства европейских государств далеко не все предприятия могут производить бетон стабильно одинакового качества.
Приборы для неразрушающих методов контроля прочности бетона
Существует несколько неразрушающих методов контроля прочности бетона:
- метод отрыва со скалыванием
- ультразвуковой метод
- метод ударного импульса
- метод упругого отскока
- метод пластической деформации.
Выделить какой-то один метод или сказать, что он лучше другого, нельзя. Все они обладают своими достоинствами, недостатками и ограничениями в применении.
Метод отрыва со скалыванием является единственным неразрушающим методом контроля прочности, который можно считать эталонным и единственным методом, для которого в ГОСТах прописаны градуировочные зависимости. Ни один другой неразрушающий метод нельзя использовать, не привязавшись к какому-либо эталону. Но если быть совсем точным, то метод отрыва со скалыванием нельзя назвать полностью неразрушающим; скорее это метод местных разрушений.
Метод отрыва со сколом был создан в СССР – его разработал и предложил специалист Донецкого «ПромСтройНИИПроект» Иван Валентинович Вольф. В Америке об этом методе узнали от нашего крупнейшего специалиста по бетону Б.Г. Скрамтаева. К сожалению, тогда нашим исследователям не удалось официально закрепить за собой приоритет в разработке данного метода, и только впоследствии некоторые американские специалисты признали, что метод отрыва со сколом был создан в Советском Союзе. Приборы, реализующие этот метод, были выпущены в США, Канаде, скандинавских странах и т. д. Однако, когда в рамках СЭВ проводились сравнительные испытания данных устройств, выяснилось, что именно отечественные приборы позволяют получить лучшие результаты. К настоящему времени они были значительно усовершенствованы. Одни из приборов, реализующие данный метод, выпускаются в Челябинске ( СКБ «Стройприбор» ).
В основном это касается модели ПОС-50 МГ-4. Другой прибор – ПОС-30 – ориентирован на анкер с меньшей глубиной заделки ( 30 и 35 мм ), и тут возникают определенные сложности. Дело в том, что наиболее точные результаты позволяют получить приборы с анкером, имеющим глубину заделки 48 мм – для них определена точная градуировочная зависимость. Сотрудниками Донецкого «ПромСтройНИИПроект» было поставлено большое количество экспериментов по использованию данного метода. И для анкера с глубиной заделки 48 мм экспериментальные данные практически идеально совпадали с теоретическими результатами, полученными во ВНИИФТРИ А.И. Марковым.
Когда-то инициатором применения анкеров с малой глубиной заделки был НИИЖБ. Во многом это связано с тем, что анкер с глубиной заделки 48 мм нельзя использовать для контроля качества высокопрочных бетонов – необходимо ориентироваться на анкер с глубиной заделки 35 мм. К сожалению, существующие нормированные коэффициенты для анкеров с меньшей глубиной заделки не вполне точны. Поэтому сегодня специалисты постоянно работают над определением переходного коэффициента от анкера с глубиной заделки 48 мм к анкерам с глубиной заделки 30 и 35 мм. В настоящее время для анкера с глубиной заделки 35 мм нам удалось накопить достаточно данных и определить надежные переходные коэффициенты. Для 30 мм таких коэффициентов пока нет.
Ультразвуковые приборы могут использоваться не только для контроля прочности бетона, но и для дефектоскопии, контроля качества бетонирования, определения глубины трещин и т. д.
Одним из наиболее крупных отечественных предприятий по разработке и производству оборудования для неразрушающего контроля во всех областях промышленности является компания «Спектр». В нее входит фирма «Акустические контрольные системы», которая выпускает ультразвуковой прибор для широкого применения ( в том числе и для неразрушающего контроля прочности бетона ) УК 14-01. Этот прибор достаточно прост в эксплуатации, имеет большую встроенную память, а полученные данные легко «скачать» на компьютер. К сожалению, ультразвуковые приборы нельзя использовать для контроля качества высокопрочных бетонов. Для этой цели необходимо применять метод ударного импульса.
Хорошие приборы, реализующие метод упругого отскока, отечественная промышленность сейчас не производит. Несколько десятков лет назад швейцарскими производителями был создан соответствующий прибор ( так называемый прибор Шмидта ). Он оказался настолько эффективным, что до сих пор ни одной компании в мире не удалось разработать более совершенную конструкцию. Сегодня различные модификации прибора Шмидта выпускаются в Германии, Швейцарии, Италии, Китае и т. д. С точки зрения качества продукция европейских производителей выглядит предпочтительней.
Максим КИСЕЛЕВ,
технический консультант ООО «Геостройприбор» (г. Омск)
Как вы считаете, достаточно ли широко применяются методы неразрушающего контроля прочности бетона в России?
На мой взгляд, сегодня определение прочности бетона с помощью приборов неразрушающего контроля в нашей стране развито слабо. Использование методов НК только начинает набирать обороты. Некоторые строительные организации отказываются от услуг лабораторий, использующих методы неразрушающего контроля прочности бетона.
Какие методы неразрушающего контроля прочности бетона наиболее популярны? С помощью каких приборов они реализуются?
Самым распространенным методом контроля прочности бетона был и остается метод ударного импульса. Для его реализации используется стандартный молоток Кашкарова. Принцип действия прибора достаточно прост. В молоток вставляется металлический стержень определенной прочности, после чего прибором наносят удар по поверхности бетона. С помощью углового масштаба измеряют размеры отпечатков, получившихся на бетоне и стержне. Прочность бетона определяется из соотношения размеров отпечатков ( прочность стержня известна ). Основным достоинством молотка Кашкарова является низкая стоимость прибора.
Другим распространенным устройством для реализации метода ударного импульса является электронный прибор ИПС-МГ4. В нем удар по поверхности бетона производится специальным датчиком. Определение прочности выполняется автоматически – данные высвечиваются на дисплее. Этот прибор проще в эксплуатации, и при его использовании исключаются ошибки, связанные с человеческим фактором. Это повышает точность измерений – погрешность составляет ±10%. Еще одним достоинством устройства является возможность передачи данных из памяти прибора на ПК. Менее широко распространены приборы серии ПОС, реализующие метод отрыва со скалыванием.
Как вы оцениваете состояние отечественного рынка ПНК прочности бетона?
Сегодня выбор приборов для НК прочности бетона не слишком широк. В основном такие устройства различаются по методам определения прочности. Лучше всего представлены приборы, использующие метод ударного импульса и метод отрыва со скалыванием. Большинство этих приборов российского производства. Они соответствуют всем требованиям нормативных документов, регламентирующих проведение НК прочности бетона ( основной документ – ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами неразрушающего контроля» ). Из-за высокой стоимости зарубежные аналоги представлены ограничено, а соотношение «цена/качество» большинства российских приборов лучше
При проведении контроля прочности бетона с помощью неразрушающих методов необходимо учитывать то обстоятельство, что все эти методы являются косвенными. И ни один из приборов НК нельзя применять, не построив градуировочную зависимость для каждого конкретного бетона. К сожалению, подавляющее большинство российских и зарубежных производителей приборов градуирует свою продукцию в единицах прочности. А такая градуировка может быть построена только для каких-то вполне определенных условий и не является универсальной. Все это достаточно четко прописано в ГОСТах, однако практика показывает, что эти требования соблюдаются не всегда.
До недавнего времени интерпретация показаний приборов, реализующих методы неразрушающего контроля прочности бетона, была связана с некоторыми трудностями. Все неразрушающие методы имеют определенные погрешности, и при оценке прочности бетона их необходимо учитывать.
ФГУП НИИ недавно был выпущен новый отраслевой стандарт по ультразвуковому методу контроля прочности бетона – «Бетоны. Ультразвуковой метод определения прочности» СТО 3655 4501 009 ( 2007 г.). В этом документе учтены результаты большого количества испытаний бетона при строительстве монолитных зданий. Сотрудники института разрабатывают аналогичный документ для метода отрыва со сколом.
Оценивая состояние отечественного рынка приборов для неразрушающих методов контроля прочности бетона, можно сказать, что ассортимент приборов широк: на рынке работает большое количество производителей, сопровождающих свою продукцию инструкциями, часто не соответствующими требованиям стандартов.
Цены на такое оборудование вполне оправданны. При соблюдении всех требований по проведению контроля большинство приборов для НК фактически являются равноточными. Западные приборы на российском рынке представлены в основном различными модификациями прибора Шмидта.
Проблемы, связанные с применением неразрушающих методов контроля в строительстве
Существует несколько причин, ограничивающих использование приборов НК для определения прочности бетона. Во-первых, в настоящий момент в России нет соответствующей нормативной базы. Все стандарты по неразрушающим методам контроля прочности бетона были разработаны еще в СССР. Последний, по механическим методам неразрушающего контроля, был принят в 1988 году. Все эти документы устарели и не отвечают требованиям сегодняшнего дня, а разработка новых нормативов практически не финансируется. Далеко не самый сложный новый стандарт «Бетоны. Ультразвуковой метод определения прочности» ( 2007 г.) был разработан специалистами ФГУП НИИ фактически между делом. Поэтому его создание потребовало так много времени. Строго говоря, современной нормативной базы по методам НК прочности бетона в РФ не существует.
Во-вторых, в России не хватает квалифицированных специалистов по неразрушающим методам контроля прочности бетона. Неразрушающие методы используются во всех отраслях промышленности. Причем почти во всех отраслях существуют документы, четко определяющие требования к специалистам, которым разрешается проведение неразрушающего контроля. В этих документах сказано, какими знаниями и практическими навыками должны обладать такие специалисты, какие квалификационные процедуры они должны проходить и т. д. В строительстве ничего подобного нет. Человек покупает прибор для НК и уже считает, что имеет право определять прочность бетона. На самом деле это сложный процесс. Недостаточно снять показания прибора, нужно их грамотно обработать и интерпретировать, что могут сделать только специалисты, обладающие высокой квалификацией именно в данной области
Максим БУШУЕВ,
ведущий инженер ЗАО «Геодезические приборы» (г. Санкт-Петербург)
Отечественный рынок приборов для неразрушающего контроля прочности бетона
Почему в последнее время методы неразрушающего контроля прочности бетона все чаще используются на строительных площадках России?
Во-первых, возросла необходимость технической экспертизы зданий и сооружений, находящихся в эксплуатации на протяжении длительного времени. Во-вторых, в нашей стране существует большое количество недостроенных объектов ( строительство было остановлено в 90-е годы прошлого столетия ). Для того чтобы возобновить строительство таких объектов, необходимо провести предварительную оценку их прочностных характеристик. В-третьих, возросло количество объектов, возводимых с помощью технологии монолитного домостроения. При строительстве таких объектов специалистам постоянно приходится оперативно определять распалубочную прочность бетона. В-четвертых, на заводах ЖБИ в связи с ростом количества и объемов заказов возникла необходимость быстрого определения прочностных характеристик изготавливаемых конструкций.
Какому методу неразрушающего контроля отдают предпочтение российские специалисты? Почему?
Согласно моим данным, для определения прочности бетона чаще всего применяется метод ударного импульса. Приборы, использующие данный метод, отличаются небольшим весом и компактностью, а определение прочности бетона методом ударного импульса является достаточно простой операцией. Однако если требования к контролю качества строительства будут возрастать, то широкое применение получит метод отрыва со скалыванием как наиболее точный.
Точность приборов, реализующих метод ударного импульса, как правило, составляет 8-10%. Результаты измерений выдаются в единицах измерения прочности на сжатие. После соответствующей настройки данные приборы можно использовать для работы с различными строительными материалами. Также с их помощью можно определять класс бетона, производить измерение прочности под различными углами к поверхности объекта, переносить накопленные данные на компьютер.
Как вы оцениваете состояние российского рынка приборов неразрушающего контроля прочности бетона?
Ассортимент приборов, реализующих все известные методы НК прочности бетона, достаточно широк. Их технические возможности в основном соответствуют предъявляемым к ним требованиям. Стоит отметить, что большинство из них выпускается отечественными производителями. Количество импортных приборов для НК прочности бетона, представленных на российском рынке, относительно невелико. В основном это оборудование фирмы Proseq, реализующее методы ударного импульса и отрыва со скалыванием. Как средства измерения в России эти приборы не сертифицированы.
Качество большинства приборов, представленных на рынке, вполне приемлемое. Используя индивидуальную градуировку оборудования, можно добиться высокой точности. Большинство приборов выпускается в компактных и эргономичных корпусах, обладают интуитивно понятным меню, а их функциональных возможностей вполне достаточно для проведения измерений и получения достоверных результатов. Как правило, производители дают гарантию на свое оборудование от 1 до 1,5 лет, и реальное количество отказов (в пределах гарантийного срока) невелико. Часть приборов занесена в Государственный Реестр средств измерений.
Какие факторы ограничивают применение неразрушающих методов контроля прочности бетона на территории России? Как вы оцениваете перспективы таких методов?
Ограничение использования методов НК прочности бетона связано с отсутствием квалифицированных специалистов (они должны быть в штате всех крупных строительных организаций) и нежеланием руководства компаний выделять средства для приобретения приборов и обучения специалистов.
Что касается перспектив развития приборов для НК, то скорее всего будут дорабатываться (модифицироваться) уже существующие модели приборов – в основном за счет улучшения их измерительной части – датчиков. Не исключено, что получат распространение системы, позволяющие осуществлять мониторинг уже построенных конструкций в процессе их эксплуатации
Подготовил Денис СТРОГАНОВ p73/l7/index.html
Специалисты организации Независимая Экспертиза готовы помочь как физическим, так и юридическим лицам в проведении неразрушающего метода, экспертиза бетона, экспертиза фундамента.
У Вас нерешенные вопросы или же Вы захотите лично пообщаться с нашими специалистами или заказать неразрушающий контроль бетона, экспертиза бетона, экспертиза фундамента, всю необходимую для этого информацию можно получить в разделе “Контакты”.
С нетерпением ждем Вашего звонка и заранее благодарим за оказанное доверие
Экспертиза бетона, экспертиза фундамента проводится
400074, г. Волгоград, ул. Иркутская, 7 (остановка ТЮЗ, отдельный вход с торца здания).
Заключение независимой экспертной организации имеет статус официального документа доказательного значения и может быть использовано в суде.
Испытание бетона
Как известно, бетон это искусственный каменный материал, получаемый из правильно подобранной бетонной смеси после её формования и твердения.
Бетоны классифицируются по нижеперечисленным основным признакам:
- по плотности (особо тяжёлые – плотность более 2500 кг/м3, тяжёлые – плотность от 1800 до 2500 кг/м3, легкие – плотность от 500 до 1800 кг/м3, особо легкие – плотность менее 500 кг/м3)
- по назначению (обычный, гидротехнический, жаростойкий, теплоизоляционный, дорожный, и т. д.)
- по виду вяжущего (цементные, силикатные, гипсовые, на жидком стекле, полимерные и т. д.)
- по виду заполнителя (на плотных заполнителях, на пористых заполнителях и т. д.)
- по крупности зерен заполнителя (крупнозернистые и мелкозернистые)
- по структуре (плотные, крупнозернистые, поризованные, ячеистые)
- по условиям твердения (естественного твердения, автоклавного твердения и т. д.)
Строительная лаборатория «Строймат и К» проводит экспертизу бетона и бетонной смеси. Экспертиза бетона проводится нами как на строящихся объектах, так и на построенных. Экспертиза бетона проводится с применением современного оборудования и позволяет определить многие физико-механические характеристики бетона.
Испытание бетона на предмет определения его строительно-технических характеристик проводится нами как в условиях стационарной лаборатории по контрольным образцам (плотность, прочность, морозостойкость, водонепроницаемость), так и на стройплощадке — разрушающими (выбуривание образцов кернов) и неразрушающими методами контроля прочности бетона (отрыв со скалыванием, упругий отскок, ультразвуковое прозвучивание).
Предлагаем Вам следующие испытания:
- Определение морозостойкости бетона по контрольным образцам
- Определение водонепроницаемости бетона по контрольным образцам
- Испытание образцов бетона
- Отбор кернов. Определение прочности бетона по кернам, отобранным из конструкции
- Неразрушающий контроль бетона
1. Определение морозостойкости бетона по контрольным образцам по ГОСТ 10060
В качестве образцов используются кубы с ребром 100 мм.
Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект
Чтобы рассчитать стоимость заказа, нужно:
- оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
- позвонить по телефонам: 84954307697; 84997921114; 89166009893
Морозостойкость бетона — способность сохранять физико-механические (прочность при сжатии, плотность и т.д.) свойства при многократном переменном замораживании и оттаивании. Морозостойкость бетона характеризуют соответствующей маркой по морозостойкости (F).
Марка бетона по морозостойкости (F) характеризуется количеством циклов замораживания и оттаивания образцов бетона, испытанных по базовым методам, при которых сохраняются первоначальные физико-механические свойства по прочности и потери массы. Цикл испытания — совокупность одного периода замораживания и оттаивания образцов.
Основные образцы — образцы, предназначенные для проведения испытаний замораживания и оттаивания. Контрольные образцы — образцы, предназначенные для определения прочности бетона на сжатие перед началом испытания основных образцов.
Морозостойкость бетона определяют при достижении им проектного возраста (28 суток), что подтверждается проведением конечных испытаний образцов-кубов бетона на прочность при сжатии. Условия испытания для определения морозостойкости в зависимости от метода и вида бетона принимают по таблице 1.
Метод и марка бетона по морозостойкости
Среда и температура замораживания, °С
Среда и температура замораживания, °С
Воздушная, минус 18±2
Все виды бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся при действии минерализованной воды
5 %- ный водный раствор хлорида натрия
5 %- ный водный раствор хлорида натрия, 20±2
Бетоны дорожных и аэродромных покрытий и бетонных конструкций, эксплуатирующихся при действии минерализованной воды
5 %- ный водный раствор хлорида натрия
Воздушная, минус 18±2
5 %- ный водный раствор хлорида натрия, 20±2
Все виды бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся при действии минерализованной воды и легких бетонов марок по средней плотностью менее D1500
5 %- ный водный раствор хлорида натрия минус 50±5
Все виды бетонов, кроме легких бетонов марок по средней плотности менее D1500
Морозостойкость бетона определяют в проектном возрасте (после итоговых испытаний), установленном в нормативно-технической и проектно
Количество изготовляемых кубов-образцов бетона с ребром 100 мм:
- при 1-ом и 2-ом методе определения морозостойкости принимают равным 18 шт. (6 контрольных + 12 основных)
- при 3-м методе -12 шт. (6 контрольных + 6 основных)
Образцы для испытаний должны быть без внешних дефектов, разброс значений плотности отдельных образцов в серии (до их насыщения) не должен превышать 30 кг/м3. Массу образцов определяют с погрешностью не более 0,1 %. Образцы изготавливают и испытывают сериями.
Число циклов испытания основных образцов бетона в течение одних суток должно быть не менее 1. Испытания надо вести непрерывно. При вынужденных перерывах в испытании образцы должны храниться в замороженном состоянии в морозильной камере при температуре не выше минус 10°С, при первом и втором методах образцы хранят укрытыми влажной тканью, при третьем методе – в 5%-ном водном растворе хлорида натрия.
Соотношение между числом циклов испытаний и маркой бетона по морозостойкости, принимают по таблице 4.
2. Определение водонепроницаемости бетона по контрольным образцам по ГОСТ 12730.5.
В качестве образцов используются кубы с ребром 150 мм или цилиндры диаметром и высотой 150 мм.
Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект
Чтобы рассчитать стоимость заказа, нужно:
- оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
- позвонить по телефонам: 84954307697; 84997921114; 89166009893
Марка бетона по водонепроницаемости определяется максимальной величиной давления воды, при котором не наблюдается ее просачивания через образцы, изготовленные и испытанные на водонепроницаемость согласно требованиям действующих государственных стандартов. Для бетонных конструкций, с требованиями повышенной плотности и коррозионной стойкости, а также по ограничению проницаемости, назначают марки по водонепроницаемости.
Согласно требованиям ГОСТ 26633 установлены следующие марки по водонепроницаемости: W2; W4; W6; W8; W10; W12; W14; W16; W18; W20. Конкретные марки бетона конструкций по водонепроницаемости устанавливаются в соответствии с нормами проектирования и указываются как в стандартах и технических условиях так и в проектной документации (чертежах) на эти конструкции. Для проведения испытаний применяется установка УВФ-6, которая имеет шесть гнезд для крепления цилиндрических обойм с шестью образцами-цилиндрами.
Данная установка предназначена для испытания бетонных образцов-цилиндров на водонепроницаемость по методу «мокрого пятна». УВФ-6 можно применять в закрытых помещениях с температурой воздуха +5 °C … +45 °C и влажностью до 80 %. Все бетонные образцы (одна серия) должны быть в проектном возрасте (28 суток). Образцы бетона не должны иметь дефектов в виде трещин или сколов. Давление воды подается на нижнюю торцевую поверхность бетонных образцов, установленных в обоймы, которые надежно закреплены в гнездах установки. Начиная со ступени в 0,2 МПа, выдерживают установленное давление на каждой ступени в течение 16 часов (для образцов высотой 15 см).
Испытание длится до тех пор, пока на верхней торцевой поверхности образца не появятся признаки фильтрации воды в виде капель или мокрого пятна. Испытание останавливается и фиксируется давление при котором образовалось мокрое пятно. Водонепроницаемость каждого образца оценивают максимальным давлением воды, при котором еще не наблюдалось ее просачивание через образец. Водонепроницаемость серии образцов оценивают максимальным давлением воды, при котором на четырех из шести образцов не наблюдалось просачивание воды.
Марку бетона по водонепроницаемости принимают по ГОСТ 12730.5, табл. 3. Кроме метода «мокрого пятна» применяется ускоренный метод определения водонепроницаемости бетона по его воздухопроницаемости. Для проведения испытаний используют прибор типа «АГАМА-2Р». Прибор и методика испытаний гостирована (ГОСТ 12730.5, Приложение 4). В качестве образцов, кроме цилиндров, можно использовать кубы с размером ребра 15 см. Принцип работы прибора заключается в измерении времени прохождения единицы объема газа через образец-куб.
При параллельных испытаниях одних и тех же серий образцов цилиндров бетона и образцов кубов бетона (в проектном возрасте) на установке УВФ-6 и приборе АГАМА-2Р была выявлена закономерность — расхождение в показателях водонепроницаемости бетона до марок W6 — W8 практически отсутствует или в пределах ± 10%. При увеличении марки бетона по водонепроницаемости показатели по прибору АГАМА-2Р получаются завышенными по отношению к методу «мокрого пятна». Бетон марки по водонепроницаемости W12, определенной на установке УВФ-6, соответствовал бетону марки W16 — W18, определенной на приборе АГАМА — 2Р. Таким образом, использование прибора АГАМА — 2Р целесообразно на бетонах с низкой и средней маркой по водонепроницаемости, в отличие от установки УВФ-6. У прибора АГАМА — 2Р есть и другая проблема. Эмпирически установлено, что надежность показателей достигается при температуре воздуха 20 ±2 °С и влажности воздуха 60±5%.
3. Испытание образцов бетона. Определение прочности бетона на сжатие по ГОСТ 10180.
В качестве образцов используются кубы с ребром 300, 200, 150, 100 мм или цилиндры диаметром 300, 200, 150, 100 мм, высота цилиндра составляет два диаметра.
Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект
Чтобы рассчитать стоимость заказа, нужно:
- оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
- позвонить по телефонам: 84954307697; 84997921114; 89166009893
Все, кто сталкивался с бетоном, знают, что самый простой и доступный метод определения прочности бетона — это испытание образцов бетона, изготовленных из данного бетона. Этим методом пользуются как производители (поставщики) бетона (для самоконтроля), так и его потребители (для контроля производителя). На первый взгляд, все очень просто. Отобрал пробу бетонной смеси и изготовил из нее серии контрольных образцов кубов для определения прочности бетона всей партии в промежуточном и проектном (28 суток) возрастах. В дальнейшем испытал. Если Вы производитель бетона — то своими силами, если — потребитель, то через независимую строительную лабораторию. На самом деле, уже при изготовление образцов бетона надо знать основные моменты:
1. Образцы изготавливают с нормируемыми размерами.
2. Для контроля прочности бетона на сжатие целесообразнее использовать металлические 2-х гнездные формы типа 2ФК-100 (каждая ячейка формы в виде куба с внутренним размером ребра 100 мм).
Данная металлическая форма (при правильном ее использовании) обеспечит вам:
- нормируемые допуски в перпендикулярности смежных граней (отклонение не более 1 мм) и в размерах готового образца (отклонения в пределах ± 1 мм по ребрам)
- удобство при изготовлении образцов (малый вес, быстрота и технологичность при сборке-разборке)
3. Пробу бетонной смеси для изготовления образцов бетона отбирают из средней части замеса, а при непрерывном бетонировании (например бетононасосом) в три приема в течении не более 10 минут (обязательно перемешивают перед укладкой в форму).
4. Укладку и уплотнение бетонной смеси следует производить не позднее, чем через 20 мин после отбора пробы, причем бетонную смесь заполняют в форме слоями высотой не более 100 мм. При осадке конуса (ОК) смеси более 10 см (П3 — П5), смесь укладывают штыкованием стальным стержнем диаметром 16 мм с закругленным концом. Число нажимов стержня рассчитывают из условия, чтобы один нажим приходился на 10 см 2 верхней открытой поверхности образца, штыкование выполняют равномерно по спирали от краев формы к ее середине. При ОК менее 10 см (П1, П2) — бетонную смесь дополнительно уплотняют вибрированием, до прекращения ее оседания, выравнивания ее поверхности, появления на ней тонкого слоя цементного теста и прекращения выделения пузырьков воздуха.
5. Образцы изготавливают и испытывают сериями. Число образцов в серии (кроме ячеистого бетона) принимают равным 3-4 образца (в дальнейшем, при испытании, расчет средней прочности в серии ведется по двум или трем наибольшим значениям показателя прочности, соответственно).
6.При изготовлении нескольких серий образцов, предназначенных для определения прочностных характеристик бетона в различном возрасте, все образцы следует изготавливать из одной пробы бетонной смеси и уплотнять их в одинаковых условиях. Отклонения между собой значений средней плотности бетона отдельных серий и средней плотности отдельных образцов в каждой серии к моменту их испытания не должны превышать 50 кг/м 3 . При несоблюдении этого требования результаты испытаний не учитываются.
7. Перед испытанием образцы визуально осматривают на предмет наличия дефектов в виде трещин, сколов ребер, раковин и инородных включений. Образцы, имеющие трещины, сколы ребер глубиной более 10 мм, раковины диаметром более 10 мм и глубиной более 5 мм (за исключением крупнопористого бетона), а также следы расслоения и недоуплотнения бетонной смеси, испытанию не подлежат.
8. Количество серий образцов , которое необходимо изготовить для контроля прочности бетона в проектном возрасте (28 суток), согласно требований ГОСТ 18105, регламентируется п. 5.2. выше названного ГОСТ.
9. При входном контроле (контроль производителя бетонной смеси) образцы бетона надо хранить в нормальных условиях (температура 20±3°С, относительная влажность воздуха 95±5%). Контрольные образцы бетона, изготовленные для приемочного контроля (контроль и оценка партий бетона уложенного в монолитные конструкции) надо хранить в условиях, согласно регламенту или другой технической документации на производство данных железобетонных конструкций.
10. Оценка прочности бетона при испытании кубов-образцов производится либо с учетом коэффициента вариации по схеме А, Б либо без его учета -схема Г (ГОСТ 18105, п.4.4).
4. Отбор кернов. Определение прочности бетона по кернам, отобранным из конструкций
Отбор кернов осуществляют с целью определения прочности бетона конструкции и визуального осмотра выбуренных образцов.
Испытания данным методом предназначены для определения класса бетона испытанных конструкций по прочности, и включает в себя следующие этапы.
1. Отбор кернов (выбуривание бетонных кернов) из конструкции на стройплощадке.
Отбор кернов из бетона конструкции производится с помощью установки для алмазного бурения типа D.Bender. Отсутствие арматуры контролируется цифровым детектором DMF 10 Zoom PROFESSIONAL. Количество и места отбора проб определяется по желанию Заказчика, с учетом требований ГОСТ 28570 (п.1.2 и 1.3). Схема расположения участков отбора образцов приводится в техническом отчете.
2. Подготовка образцов к испытаниям (из отобранных кернов).
Для определения физико-механических характеристик бетона из отобранных кернов подготавливают образцы-цилиндры в соответствии с ГОСТ 28570«Бетоны. Методы определения прочности по образцам, отобранным из конструкций» и ГОСТ 10180 «Бетоны. Методы определения прочности по контрольным образцам».
Выбуренный бетонный керн с помощью камнерезательной установки распиливают на образцы-цилиндры.
Количество образцов-цилиндров зависит от диаметра исходного керна, и варьируется от двух до четырех.
Для торцевания (то есть обработке керна с целью придания ему правильных геометрических размеров для испытания) используется специальный станок для торцевания кернов. Также, выравнивать торцы можно вручную путем нанесения выравнивающего слоя, в соответствии с методикой Приложения ГОСТ 28570, причем в качестве выравнивающих составов можно использовать эпоксидные композиции, цементное тесто, цементно-песчаные растворы.
После изготовления образцы-цилиндры выдерживаются в лабораторных условиях по ГОСТ 28570 (п.4.1.) в течение 6 дней.
3. Испытания образцов-цилиндров на прочность при сжатии.
Перед испытаниями образцы-цилиндры бетона осматриваются на наличие дефектов в виде трещин, сколов ребер, раковин и инородных включений, а так же следов расслоения и недоуплотнения бетонной смеси. В случае наличие таких дефектов как трещины, сколы, следы расслоения и недоуплотнения бетонной смеси – образцы бракуются. Остальные дефекты (раковины и т. д.) не должны превышать допустимых величин по ГОСТ 10180.
Перед испытанием образцы замеряют, взвешивают и испытывают на прессе. Полученные данные систематизируют в таблицу, выводя среднюю прочность по каждому керну (участку бетона конструкции).
5. Неразрушающий контроль бетона
В настоящее время, при контроле прочности бетона, все большее распространение, получают методы неразрушающего контроля. Методы неразрушающего контроля бетона — это, в первую очередь, методы механического и ультразвукового контроля.
Неразрушающий контроль бетона проводится по ГОСТ 22690 (механические методы) и ГОСТ 17624 и (ультразвуковой метод).
При контроле прочности бетона монолитных конструкций в проектном возрасте, проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии.
При контроле прочности бетона монолитных конструкций в промежуточном возрасте методами неразрушающего контроля испытывают не менее одной конструкции каждого вида (плита, стена, колонна и т.д.) из контролируемой партии.
Число контролируемых участков должно быть не менее:
- трех на каждую захватку для плоских конструкций (перекрытия, стены)
- одного на 4 м длины для каждой линейной горизонтальной конструкции (балка, ригель)
- шести на каждую линейную вертикальную конструкцию (колонна, пилон)
Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20.
За единичное значение прочности бетона при неразрушающем контроле принимают среднюю прочность бетона контролируемого участка или зоны конструкции, или части монолитной или сборно-монолитной конструкции.
- партия монолитных конструкций — часть, одна или несколько монолитных конструкций, изготовленных за определенное время
- захватка — объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время
- текущий коэффициент вариации прочности бетона — коэффициент вариации прочности бетона в контролируемой партии конструкций по схеме В
Число измерений, проводимых на каждом контролируемом участке конструкции определяются по ГОСТ 17624, ГОСТ 22690.
Прочность бетона определяют по предварительно установленным градуировочным зависимостям между прочностью бетона, полученной прямым разрушающим (выбуривание бетонных кернов, испытание кубов-образцов) или неразрушающим (отрыв со скалыванием) методами и косвенными характеристиками прочности при неразрушающем контроле (упругий отскок, ультразвук).
Методы неразрушающего контроля прочности (упругий отскок, ударный импульс отрыв со скалыванием, ультразвуковое прозвучивание) выбирают исходя из предполагаемых предельных значений прочности испытываемых конструкций.
К косвенным методам неразрушающего контроля прочности бетона относятся следующие методы:
Контроль прочности бетона
Безопасность эксплуатации зданий и сооружений различного назначения, возведенных при помощи железобетонных конструкции, зависит от качественных характеристик бетона, одной из которых является прочность.
Прочность бетона – это устойчивость бетона к механическим нагрузкам, например, к давлению. В зависимости от этой характеристики устанавливается марка бетона – от наименьшей прочности М15 до наибольшей М800, которая определяет его конкретное применение – заливка фундамента, создание предварительно-напряженных конструкции, нанесение теплоизоляционного слоя и т.д.
Неправильная оценка прочности бетона может привести к серьезным негативным последствиям – потере зданием или сооружением эксплуатационных качеств и даже к разрушению объекта. Именно поэтому измерение прочности бетона ведется на всех стадиях эксплуатации зданий и сооружений – от производства железобетонных изделий и строительства до демонтажа объекта.
Контроль прочности бетона осуществляется следующими методами, регламентированными российскими стандартами:
- разрушающие методы – из обследуемого участка здания или сооружения или изделия выпиливаются или выбуриваются образцы, которые затем испытывают в лабораторных условиях;
- неразрушающие методы:
- а) прямые – подразумевают прямое взаимодействие с обследуемым участком – это методы отрыва, отрыва со скалыванием, скола ребра;
- б) косвенные – обследование железобетонной конструкции проводится с помощью измерения какого-либо параметра, существенно влияющего на прочность – это ультразвуковой метод, метод упругого отскока, ударного импульса или пластической деформации.
Для оперативного контроля прочности бетона, особенно при строительстве и обследовании зданий и сооружений, неразрушающие методы контроля являются наиболее оптимальными. Методы неразрушающего контроля бетона позволяют получить большой массив данных в полевых условиях без разрушения конструкции.
До недавнего времени наиболее популярными приборами для измерения прочности бетона были:
- молоток Кашкарова – прибор, основанный на методе пластической деформации – при обследовании бетона замеряют и соотносят диаметры отпечатков, оставленный специальным ударником;
- молоток Шмидта – прибор, основанный на методе ударного импульса, при обследовании бетона измеряют высоту отскока бойка, и при помощи таблиц устанавливают прочность.
НПП «Интерприбор» создало широкую линейку склерометров ОНИКС – портативных измерителей прочности бетона, которые созданы с учетом требований современного строительства.
Склерометры серии ОНИКС
Среди склерометров серии ОНИКС легко выбрать оптимальный вариант для контроля прочности бетона неразрушающими методами:
- ОНИКС 2.6 – метод ударного импульса, отличная альтернатива молотку Шмидта, с хорошими показателями точности измерений и возможностями дефектоскопа;
- ОНИКС 2М – миниатюрный склерометр-дефектоскоп на принципе ударного импульса;
- ОНИКС 1.ОС – реализует метод отрыва со скалыванием с высокой точностью, прост в установке, благодаря особой запатентованной конструкции;
- ОНИКС 1.СР – позволяет обследовать здания и сооружения методом скола ребра даже в самых труднодоступных местах, благодаря простоте установки на конкретное обследуемое место объекта.
Любой склерометр серии ОНИКС – это:
- уникальное конструкторское решение (подтверждено патентами), обеспечивающее высокую точность результатов, безопасность и широкие возможности применения приборов в полевых условиях;
- оперативный анализ получаемых данных благодаря информативным и понятным дисплеям, а также простоте передачи информации на ПК при помощи современного программного обеспечения;
- длительный срок эксплуатации, богатая базовая и дополнительная комплектация, техническая поддержка производителя и т.д.
НПП «Интерприбор» гарантирует высокие эксплуатационные и технические характеристики склерометров серии ОНИКС, а также соответствие требованиям российских и международных стандартов, что подтверждено их внесением в реестры СИ России, Казахстана, Украины и Белоруссии.
Неразрушающие методы контроля прочности бетона
Рубрика: Технические науки
Статья просмотрена: 25922 раза
Библиографическое описание:
Бербеков Ж. В. Неразрушающие методы контроля прочности бетона // Молодой ученый. 2012. №11. С. 20-23. URL https://moluch.ru/archive/46/5697/ (дата обращения: 15.03.2019).
В статье ставится задача рассмотреть методы контроля прочности бетона, при которых последний не теряет свои эксплуатационные качества и не нарушается целостность изделия. Выявлена и обоснована необходимость использования неразрушающих методов контроля прочности, описаны принципы проведения испытаний.
Ключевые фразы: бетон, прочность бетона, неразрушающий контроль, методы испытаний, ударный, скол, ультразвуковой.
Бетон — строительный материал, искусственный каменный материал, получаемый в результате затвердевания рационально подобранной и уплотненной смеси вяжущего вещества (цемент или др.), заполнителей, воды. В ряде случаев может содержать специальные добавки. Смесь этих материалов до затвердевания называют бетонной смесью. Зерна песка и щебня составляют каменную основу бетона. Цементное тесто, образующееся после затворения бетонной смеси водой, обволакивает зерна песка и щебня, заполняет промежутки между ними и играет вначале роль смазки заполнителей, придающей подвижность (текучесть) бетонной смеси, а впоследствии, затвердевая, связывает зерна заполнителей, образуя искусственный камень — бетон. Бетон в сочетании со стальной арматурой называют железобетоном.
Неразрушающий контроль — контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации. Неразрушающий контроль особенно важен при создании и эксплуатации жизненно важных изделий, компонентов и конструкций.
При проведении определения прочности бетона с помощью методов неразрушающего контроля необходимо учитывать, что все эти методы являются косвенными. Выделить какой-то один метод нельзя, все они обладают своими достоинствами, недостатками и ограничениями в применении. Поэтому лаборатория оснащена приборами неразрушающего контроля, позволяющими использовать все методы. На начальном этапе существования здания обычно осуществляется контроль соответствия проекту линейных размеров и отсутствия их существенных отклонений от нормативных значений. Для этого применяются линейки, рулетки, нутромеры, скобы, штангенциркули, щупы микроскопы и другой специальный инвентарь. Для замеров отклонений конструкций от вертикали и горизонтали обычно используются нивелиры, теодолиты и поверочные линейки. В существующем здании оценка прочностных показателей конструктивных единиц обычно осуществляется двумя способами. Первый основывается на нагружении конструкции вплоть до ее разрушения, и, таким образом, определяется предельная несущая способность. Однако применение такого метода является, по понятным причинам, экономически нецелесообразным. Гораздо более привлекательны в этом плане неразрушающие методы, которые подразумевают применение для оценки состояния конструкций специальных приборов. В этом случае обработка полученных результатов измерений осуществляется при помощи компьютерных программ, что позволяет получить значительную достоверность конечных характеристик. Наиболее весомым фактором, определяющим метод и средства измерения и контроля, является предельно допустимая погрешность измерений. Так же немаловажно удобство проведения работ, простота обработки результатов. Основой неразрушающих методов являются косвенные характеристики, такие как отпечаток на бетоне; энергия, затраченная на удар; напряжение, приведшее к местному разрушению бетона. Рассмотрим подробнее часто применяемые методы неразрушающего контроля для основных строительных материалов.
Методы местных разрушений
Это самые точные из методов неразрушающего контроля прочности, поскольку для них допускается использовать универсальную градуировочную зависимость, в которой изменяются всего два параметра:
1) крупность заполнителя, которую принимают равной 1,0 при крупности менее 50 мм и 1,1 при крупности более 50 мм;
2) тип бетона – тяжелый либо легкий.
Метод отрыва со скалыванием и скалывания ребра конструкции заключаются в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона в процессе вырывания из него анкерного устройства.
Метод отрыва со скалыванием является единственным неразрушающим методом контроля прочности, для которого в стандартах прописаны градуировочные зависимости. Метод отрыва со скалыванием характеризуется наибольшей точностью, но и наибольшей трудоемкостью испытаний, обусловленной необходимостью подготовки шпуров для установки анкера. К недостаткам метода следует отнести также невозможность использования в густоармированных и тонкостенных конструкциях.
Метод отрыва стальных дисков может быть использован при испытании бетона в густо-армированных конструкциях, когда метод отрыва со скалыванием, а нередко и метод скалывания ребра конструкции (с учетом его ограничений) не могут быть использованы. Он точен и менее трудоемок по сравнению с методом отрыва со скалыванием. К недостаткам метода следует отнести необходимость наклеивания дисков за 3-24 часа до момента испытания (в зависимости от применяемого клея).
Метод скалывания ребра конструкции используется главным образом для контроля линейных элементов (сваи, колонны, ригели, балки, перемычки и т.п.). В отличие от методов отрыва и отрыва со скалыванием, он не требует подготовительных работ. Однако при защитном слое менее 20мм и повреждениях защитного слоя метод неприменим.
Метод отрыва стальных дисков заключается в регистрации напряжения, необходимого для местного разрушения бетона при отрыве от него металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска. В настоящее время метод используется крайне редко. Недостатки методов местных разрушений: повышенная трудоемкость; необходимость определения оси арматуры и глубины ее залегания; невозможность использования в густоармированных участках; частично повреждает поверхность конструкции.
Методы ударного воздействия на бетон
Самый распространенный метод контроля прочности бетона из всех неразрушающих – метод ударного импульса.
Метод ударного импульса заключается в регистрации энергии удара, возникающей в момент соударения бойка с поверхностью бетона.
Приборы, использующие данный метод, отличаются небольшим весом и компактностью, а определение прочности бетона методом ударного импульса является достаточно простой операцией. Результаты измерений выдаются в единицах измерения прочности на сжатие. Также с их помощью можно определять класс бетона, производить измерение прочности под различными углами к поверхности объекта, переносить накопленные данные на компьютер.
Ударные импульсы – это ударные волны малой энергии, генерируемые подшипниками качения вследствие соударений и изменений давления в зоне качения этих подшипников в течение всего срока службы подшипников и распространяющиеся в материалах деталей подшипника, подшипникового узла и прилегающих к ним деталей.
Основные задачи применения метода ударных импульсов:
– получение заблаговременного предупреждения об ухудшении условий смазки подшипников для осуществления своевременной замены смазки по ее фактическому состоянию;
– получение заблаговременного предупреждения об ухудшении условий работы подшипников вследствие различных внешних воздействий для принятия своевременных мер по устранению этих воздействий (например, перегрузки, существенного дисбаланса, несоосности и т.п.);
– получение заблаговременного предупреждения о появлении дефектов подшипников для планирования своевременных замен подшипников;
– сведение к минимуму простоев оборудования;
– сведение к минимуму рисков отказов оборудования и обеспечение надежности его работы.
Метод упругого отскока заключается в измерении величины обратного отскока ударника при соударении с поверхностью бетона. Типичным представителем приборов для испытаний по этому методу является склерометр Шмидта и его многочисленные аналоги. Метод упругого отскока, как и метод пластической деформации, основан на измерении поверхностной твердости бетона.
Метод упругого отскока заимствован из практики определения твердости металла. Для испытания бетона применяют приборы, называемые склерометрами, представляющие собой пружинные молотки со сферическими штампами. Молоток устроен так, что система пружин допускает свободный отскок ударника после удара по бетону или по стальной пластинке, прижатой к бетону. Прибор снабжен шкалой со стрелкой, фиксирующей путь ударника при его обратном отскоке. Энергия удара прибором должна быть не менее 0,75 Н-м; радиус сферической части на конце ударника – не менее 5 мм. Проверку (тарировку) приборов проводят после каждых 500 ударов.
При проведении испытаний после каждого удара берут отсчет по шкале прибора (с точностью до одного деления) и записывают в журнал. Требования к подготовке участков для испытаний, к расположению и количеству мест удара, а также к экспериментам для построения тарировочных кривых такие же, как в методе пластической деформации.
Метод пластической деформации основан на измерении размеров отпечатка, который остался на поверхности бетона после соударения с ней стального шарика. Метод устаревший, но до сих пор его используют из-за дешевизны оборудования. Наиболее широко для таких испытаний используют молоток Кашкарова. Принцип действия прост. В молоток вставляется металлический стержень определенной прочности, после чего прибором наносят удар по поверхности бетона. С помощью углового масштаба измеряют размеры отпечатков, получившихся на бетоне и стержне. Прочность бетона определяется из соотношения размеров отпечатков (прочность стержня известна).
Приборы, применяемые для испытания методом пластических деформаций, основаны на вдавливании штампа в поверхность бетона путем удара или статического давления заданной силы. Устройства статического давления применяют ограниченно. Приборами ударного действия служат пружинные и ручные молотки со сферическим штампом (шариком) и приборы маятникового типа с дисковым или шариковым штампом. Твердость стали штампов приборов ударного действия должна быть не менее HRC 60, шероховатость — Ra Литература:
ГОСТ 18105-86 Бетоны. Правила контроля прочности бетона. Государственный стандарт союза ССР. 07.10.2007;
ГОСТ 24452-80 Бетоны. Методы испытаний. Государственный стандарт союза ССР. 07.10.2007;
Баженов Ю. М. Технология бетона: учебное пособие для технологических специальностей строительных вузов. Издательство «Высшая школа». 1979
Баженов Ю.М., Алимов Л.А., Воронин В.В. и др. Технология бетона, строительных изделий и конструкций. – М.: Изд-во АСВ, 2004;
Жуков А.Д. Универсальный справочник прораба. Изд-во НТС “Стройинформ”, 2006;