Прозрачные Границы Элегантности: Стеклянные Лестничные ОгражденияAlmig - Электрический компрессор для вашего производстваКак выбрать профессионального кадастрового инженера для межеванияЗамена столешницы на кухонном гарнитуре самостоятельноСочи и ваш дом мечты от Havva GroupВолшебное Путешествие по Цум Айчурек в БишкекеЛучший Вид на Москву через «Те Самые Окна»Ниена Принт: Воплощая идеи в печатный шедеврВ поисках работы в Орше: промышленный потенциал регионаСК Гармония: Современные решения и доступные цены на дома из бруса

методы определения прочности бетона

Бетон-сервис, санкт-петербург, софийская улица, дом 76, контакты, отзывы, сайт, фото.

Содержание

методы определения прочности бетона

Независимая Экспертиза Волгоград

Финансово-экономическая экспертиза

Финансово-экономические экспертизы назначаются для решения задач, касающихся финансовой деятельности предприятий, соблюдения законодательных актов.

Строительная экспертиза

методы определения прочности бетона

Оценка бизнеса

Определение рыночной стоимости бизнеса включает в себя оценку всех активов.

методы определения прочности бетона

Оценка ущерба

Если вашей квартире нанесен ущерб от пожара, затопления, независимая оценка ущерба – обратитесь к нам, используя контактную информацию.

методы определения прочности бетона

Экспертиза оконных блоков

Пластиковые окна – технически довольно сложный продукт, поэтому проверить его качество может только квалифицированный специалист.

методы определения прочности бетона

Неразрушающие методы контроля прочности бетона

Сегодня неразрушающие методы контроля прочности бетона широко используются не только в России, но и в странах СНГ – везде, где ведется монолитное строительство ( Белоруссия, государства Средней Азии и др. ). Востребованы эти методы и в странах Западной и Восточной Европы, США, Канаде и т. д. Их развитию тоже уделяется большое внимание – периодически проводятся международные конференции, посвященные неразрушающему контролю ( НК ). Например, в этом году такая конференция прошла в США, три года назад – в Германии. На Западе такие приборы используются в основном при реконструкции сооружений.

Раньше, когда строительство в России велось в основном с применением сборного железобетона, неразрушающие методы внедрялись непосредственно на заводах. Особенно много в этом направлении было сделано Министерством строительства и руководством «Главзапстроя», обслуживающего западные районы страны. В Литве на всех заводах по производству сборного железобетона использовались неразрушающие методы контроля прочности.

При производстве сборного железобетона заводы располагались недалеко от объектов строительства. На каждом заводе была лаборатория, где прочность бетона определялась с помощью традиционных методов. Такая практика позволяла эффективно осуществлять контроль качества бетонных конструкций. Сегодня популярность неразрушающих методов контроля прочности бетона в большой степени обусловлена увеличением числа зданий из монолитного железобетона.

При использовании монолитного железобетона цементную смесь приходится транспортировать на значительные расстояния. При этом почти всегда на один и тот же крупный объект смесь поставляют несколько производителей. Соответственно лаборатории по контролю качества бетона приходится устраивать не только на предприятиях, но и непосредственно на объектах, а специалистам – контролировать готовые бетонные конструкции.

Большинство организаций не могут или не хотят устраивать на своих объектах такие лаборатории. Поэтому использование неразрушающих методов контроля прочности бетона оказывается крайне целесообразным. Особенно это актуально для России, где в отличие от большинства европейских государств далеко не все предприятия могут производить бетон стабильно одинакового качества.

Приборы для неразрушающих методов контроля прочности бетона

Существует несколько неразрушающих методов контроля прочности бетона:

  • метод отрыва со скалыванием
  • ультразвуковой метод
  • метод ударного импульса
  • метод упругого отскока
  • метод пластической деформации.

Выделить какой-то один метод или сказать, что он лучше другого, нельзя. Все они обладают своими достоинствами, недостатками и ограничениями в применении.

Метод отрыва со скалыванием является единственным неразрушающим методом контроля прочности, который можно считать эталонным и единственным методом, для которого в ГОСТах прописаны градуировочные зависимости. Ни один другой неразрушающий метод нельзя использовать, не привязавшись к какому-либо эталону. Но если быть совсем точным, то метод отрыва со скалыванием нельзя назвать полностью неразрушающим; скорее это метод местных разрушений.

Метод отрыва со сколом был создан в СССР – его разработал и предложил специалист Донецкого «ПромСтройНИИПроект» Иван Валентинович Вольф. В Америке об этом методе узнали от нашего крупнейшего специалиста по бетону Б.Г. Скрамтаева. К сожалению, тогда нашим исследователям не удалось официально закрепить за собой приоритет в разработке данного метода, и только впоследствии некоторые американские специалисты признали, что метод отрыва со сколом был создан в Советском Союзе. Приборы, реализующие этот метод, были выпущены в США, Канаде, скандинавских странах и т. д. Однако, когда в рамках СЭВ проводились сравнительные испытания данных устройств, выяснилось, что именно отечественные приборы позволяют получить лучшие результаты. К настоящему времени они были значительно усовершенствованы. Одни из приборов, реализующие данный метод, выпускаются в Челябинске ( СКБ «Стройприбор» ).

В основном это касается модели ПОС-50 МГ-4. Другой прибор – ПОС-30 – ориентирован на анкер с меньшей глубиной заделки ( 30 и 35 мм ), и тут возникают определенные сложности. Дело в том, что наиболее точные результаты позволяют получить приборы с анкером, имеющим глубину заделки 48 мм – для них определена точная градуировочная зависимость. Сотрудниками Донецкого «ПромСтройНИИПроект» было поставлено большое количество экспериментов по использованию данного метода. И для анкера с глубиной заделки 48 мм экспериментальные данные практически идеально совпадали с теоретическими результатами, полученными во ВНИИФТРИ А.И. Марковым.

Когда-то инициатором применения анкеров с малой глубиной заделки был НИИЖБ. Во многом это связано с тем, что анкер с глубиной заделки 48 мм нельзя использовать для контроля качества высокопрочных бетонов – необходимо ориентироваться на анкер с глубиной заделки 35 мм. К сожалению, существующие нормированные коэффициенты для анкеров с меньшей глубиной заделки не вполне точны. Поэтому сегодня специалисты постоянно работают над определением переходного коэффициента от анкера с глубиной заделки 48 мм к анкерам с глубиной заделки 30 и 35 мм. В настоящее время для анкера с глубиной заделки 35 мм нам удалось накопить достаточно данных и определить надежные переходные коэффициенты. Для 30 мм таких коэффициентов пока нет.

Ультразвуковые приборы могут использоваться не только для контроля прочности бетона, но и для дефектоскопии, контроля качества бетонирования, определения глубины трещин и т. д.

Одним из наиболее крупных отечественных предприятий по разработке и производству оборудования для неразрушающего контроля во всех областях промышленности является компания «Спектр». В нее входит фирма «Акустические контрольные системы», которая выпускает ультразвуковой прибор для широкого применения ( в том числе и для неразрушающего контроля прочности бетона ) УК 14-01. Этот прибор достаточно прост в эксплуатации, имеет большую встроенную память, а полученные данные легко «скачать» на компьютер. К сожалению, ультразвуковые приборы нельзя использовать для контроля качества высокопрочных бетонов. Для этой цели необходимо применять метод ударного импульса.

Хорошие приборы, реализующие метод упругого отскока, отечественная промышленность сейчас не производит. Несколько десятков лет назад швейцарскими производителями был создан соответствующий прибор ( так называемый прибор Шмидта ). Он оказался настолько эффективным, что до сих пор ни одной компании в мире не удалось разработать более совершенную конструкцию. Сегодня различные модификации прибора Шмидта выпускаются в Германии, Швейцарии, Италии, Китае и т. д. С точки зрения качества продукция европейских производителей выглядит предпочтительней.

Максим КИСЕЛЕВ,
технический консультант ООО «Геостройприбор» (г. Омск)

Как вы считаете, достаточно ли широко применяются методы неразрушающего контроля прочности бетона в России?

На мой взгляд, сегодня определение прочности бетона с помощью приборов неразрушающего контроля в нашей стране развито слабо. Использование методов НК только начинает набирать обороты. Некоторые строительные организации отказываются от услуг лабораторий, использующих методы неразрушающего контроля прочности бетона.

Какие методы неразрушающего контроля прочности бетона наиболее популярны? С помощью каких приборов они реализуются?

Самым распространенным методом контроля прочности бетона был и остается метод ударного импульса. Для его реализации используется стандартный молоток Кашкарова. Принцип действия прибора достаточно прост. В молоток вставляется металлический стержень определенной прочности, после чего прибором наносят удар по поверхности бетона. С помощью углового масштаба измеряют размеры отпечатков, получившихся на бетоне и стержне. Прочность бетона определяется из соотношения размеров отпечатков ( прочность стержня известна ). Основным достоинством молотка Кашкарова является низкая стоимость прибора.

Другим распространенным устройством для реализации метода ударного импульса является электронный прибор ИПС-МГ4. В нем удар по поверхности бетона производится специальным датчиком. Определение прочности выполняется автоматически – данные высвечиваются на дисплее. Этот прибор проще в эксплуатации, и при его использовании исключаются ошибки, связанные с человеческим фактором. Это повышает точность измерений – погрешность составляет ±10%. Еще одним достоинством устройства является возможность передачи данных из памяти прибора на ПК. Менее широко распространены приборы серии ПОС, реализующие метод отрыва со скалыванием.

Как вы оцениваете состояние отечественного рынка ПНК прочности бетона?

Сегодня выбор приборов для НК прочности бетона не слишком широк. В основном такие устройства различаются по методам определения прочности. Лучше всего представлены приборы, использующие метод ударного импульса и метод отрыва со скалыванием. Большинство этих приборов российского производства. Они соответствуют всем требованиям нормативных документов, регламентирующих проведение НК прочности бетона ( основной документ – ГОСТ 22690-88 «Бетоны. Определение прочности механическими методами неразрушающего контроля» ). Из-за высокой стоимости зарубежные аналоги представлены ограничено, а соотношение «цена/качество» большинства российских приборов лучше

При проведении контроля прочности бетона с помощью неразрушающих методов необходимо учитывать то обстоятельство, что все эти методы являются косвенными. И ни один из приборов НК нельзя применять, не построив градуировочную зависимость для каждого конкретного бетона. К сожалению, подавляющее большинство российских и зарубежных производителей приборов градуирует свою продукцию в единицах прочности. А такая градуировка может быть построена только для каких-то вполне определенных условий и не является универсальной. Все это достаточно четко прописано в ГОСТах, однако практика показывает, что эти требования соблюдаются не всегда.

До недавнего времени интерпретация показаний приборов, реализующих методы неразрушающего контроля прочности бетона, была связана с некоторыми трудностями. Все неразрушающие методы имеют определенные погрешности, и при оценке прочности бетона их необходимо учитывать.

ФГУП НИИ недавно был выпущен новый отраслевой стандарт по ультразвуковому методу контроля прочности бетона – «Бетоны. Ультразвуковой метод определения прочности» СТО 3655 4501 009 ( 2007 г.). В этом документе учтены результаты большого количества испытаний бетона при строительстве монолитных зданий. Сотрудники института разрабатывают аналогичный документ для метода отрыва со сколом.

Оценивая состояние отечественного рынка приборов для неразрушающих методов контроля прочности бетона, можно сказать, что ассортимент приборов широк: на рынке работает большое количество производителей, сопровождающих свою продукцию инструкциями, часто не соответствующими требованиям стандартов.

Цены на такое оборудование вполне оправданны. При соблюдении всех требований по проведению контроля большинство приборов для НК фактически являются равноточными. Западные приборы на российском рынке представлены в основном различными модификациями прибора Шмидта.

Проблемы, связанные с применением неразрушающих методов контроля в строительстве

Существует несколько причин, ограничивающих использование приборов НК для определения прочности бетона. Во-первых, в настоящий момент в России нет соответствующей нормативной базы. Все стандарты по неразрушающим методам контроля прочности бетона были разработаны еще в СССР. Последний, по механическим методам неразрушающего контроля, был принят в 1988 году. Все эти документы устарели и не отвечают требованиям сегодняшнего дня, а разработка новых нормативов практически не финансируется. Далеко не самый сложный новый стандарт «Бетоны. Ультразвуковой метод определения прочности» ( 2007 г.) был разработан специалистами ФГУП НИИ фактически между делом. Поэтому его создание потребовало так много времени. Строго говоря, современной нормативной базы по методам НК прочности бетона в РФ не существует.

Во-вторых, в России не хватает квалифицированных специалистов по неразрушающим методам контроля прочности бетона. Неразрушающие методы используются во всех отраслях промышленности. Причем почти во всех отраслях существуют документы, четко определяющие требования к специалистам, которым разрешается проведение неразрушающего контроля. В этих документах сказано, какими знаниями и практическими навыками должны обладать такие специалисты, какие квалификационные процедуры они должны проходить и т. д. В строительстве ничего подобного нет. Человек покупает прибор для НК и уже считает, что имеет право определять прочность бетона. На самом деле это сложный процесс. Недостаточно снять показания прибора, нужно их грамотно обработать и интерпретировать, что могут сделать только специалисты, обладающие высокой квалификацией именно в данной области

Максим БУШУЕВ,
ведущий инженер ЗАО «Геодезические приборы» (г. Санкт-Петербург)

Отечественный рынок приборов для неразрушающего контроля прочности бетона

Почему в последнее время методы неразрушающего контроля прочности бетона все чаще используются на строительных площадках России?

Во-первых, возросла необходимость технической экспертизы зданий и сооружений, находящихся в эксплуатации на протяжении длительного времени. Во-вторых, в нашей стране существует большое количество недостроенных объектов ( строительство было остановлено в 90-е годы прошлого столетия ). Для того чтобы возобновить строительство таких объектов, необходимо провести предварительную оценку их прочностных характеристик. В-третьих, возросло количество объектов, возводимых с помощью технологии монолитного домостроения. При строительстве таких объектов специалистам постоянно приходится оперативно определять распалубочную прочность бетона. В-четвертых, на заводах ЖБИ в связи с ростом количества и объемов заказов возникла необходимость быстрого определения прочностных характеристик изготавливаемых конструкций.

Какому методу неразрушающего контроля отдают предпочтение российские специалисты? Почему?

Согласно моим данным, для определения прочности бетона чаще всего применяется метод ударного импульса. Приборы, использующие данный метод, отличаются небольшим весом и компактностью, а определение прочности бетона методом ударного импульса является достаточно простой операцией. Однако если требования к контролю качества строительства будут возрастать, то широкое применение получит метод отрыва со скалыванием как наиболее точный.

Точность приборов, реализующих метод ударного импульса, как правило, составляет 8-10%. Результаты измерений выдаются в единицах измерения прочности на сжатие. После соответствующей настройки данные приборы можно использовать для работы с различными строительными материалами. Также с их помощью можно определять класс бетона, производить измерение прочности под различными углами к поверхности объекта, переносить накопленные данные на компьютер.

Как вы оцениваете состояние российского рынка приборов неразрушающего контроля прочности бетона?

Ассортимент приборов, реализующих все известные методы НК прочности бетона, достаточно широк. Их технические возможности в основном соответствуют предъявляемым к ним требованиям. Стоит отметить, что большинство из них выпускается отечественными производителями. Количество импортных приборов для НК прочности бетона, представленных на российском рынке, относительно невелико. В основном это оборудование фирмы Proseq, реализующее методы ударного импульса и отрыва со скалыванием. Как средства измерения в России эти приборы не сертифицированы.

Качество большинства приборов, представленных на рынке, вполне приемлемое. Используя индивидуальную градуировку оборудования, можно добиться высокой точности. Большинство приборов выпускается в компактных и эргономичных корпусах, обладают интуитивно понятным меню, а их функциональных возможностей вполне достаточно для проведения измерений и получения достоверных результатов. Как правило, производители дают гарантию на свое оборудование от 1 до 1,5 лет, и реальное количество отказов (в пределах гарантийного срока) невелико. Часть приборов занесена в Государственный Реестр средств измерений.

Какие факторы ограничивают применение неразрушающих методов контроля прочности бетона на территории России? Как вы оцениваете перспективы таких методов?

Ограничение использования методов НК прочности бетона связано с отсутствием квалифицированных специалистов (они должны быть в штате всех крупных строительных организаций) и нежеланием руководства компаний выделять средства для приобретения приборов и обучения специалистов.

Что касается перспектив развития приборов для НК, то скорее всего будут дорабатываться (модифицироваться) уже существующие модели приборов – в основном за счет улучшения их измерительной части – датчиков. Не исключено, что получат распространение системы, позволяющие осуществлять мониторинг уже построенных конструкций в процессе их эксплуатации

Подготовил Денис СТРОГАНОВ p73/l7/index.html

Специалисты организации Независимая Экспертиза готовы помочь как физическим, так и юридическим лицам в проведении неразрушающего метода, экспертиза бетона, экспертиза фундамента.

У Вас нерешенные вопросы или же Вы захотите лично пообщаться с нашими специалистами или заказать неразрушающий контроль бетона, экспертиза бетона, экспертиза фундамента, всю необходимую для этого информацию можно получить в разделе “Контакты”.

С нетерпением ждем Вашего звонка и заранее благодарим за оказанное доверие

Экспертиза бетона, экспертиза фундамента проводится

400074, г. Волгоград, ул. Иркутская, 7 (остановка ТЮЗ, отдельный вход с торца здания).

Заключение независимой экспертной организации имеет статус официального документа доказательного значения и может быть использовано в суде.

Определение прочности бетона методами разрушающего и неразрушающего контроля Текст научной статьи по специальности «Строительство. Архитектура»

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Букин Александр Васильевич, Патраков Александр Николаевич

Дан сравнительный анализ результатов определения прочности бетона методами разрушающего и неразрушающего контроля. Проанализированы причины расхождений результатов испытаний . Определен поправочный коэффициент для корректировки базовых градуировочных зависимостей прочности бетона .

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Букин Александр Васильевич, Патраков Александр Николаевич,

Текст научной работы на тему «Определение прочности бетона методами разрушающего и неразрушающего контроля»

A.B. Букин, А.Н. Патраков

ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ БЕТОНА МЕТОДАМИ РАЗРУШАЮЩЕГО И НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ

Дан сравнительный анализ результатов определения прочности бетона методами разрушающего и неразрушающего контроля. Проанализированы причины расхождений результатов испытаний. Определен поправочный коэффициент для корректировки базовых градуировочных зависимостей прочности бетона.

При обследовании несущих строительных конструкций зданий и сооружений, согласно СП 13-102-2003 [5], определяется прочность бетона на одноосное сжатие.

Известно, что в бетонных и железобетонных конструкциях прочность бетона определяют механическими методами неразрушающего контроля по ГОСТ 22690-88, разрушающего контроля образцов, отобранных из конструкций, по ГОСТ 28570-90 и контрольных образцов по ГОСТ 10180-90.

Для определения прочности бетона в конструкциях методами неразрушающего контроля, в соответствии с требованиями гл. 3 ГОСТ 22690-88, предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы). При обследовании конструкций ГОСТ допускает применять градуировочную зависимость, установленную для бетона, отличающегося от испытываемого, с уточнением ее в соответствии с методикой, приведенной в приложении 9 ГОСТ 22690-88 [1].

При построении градуировочной зависимости проводят испытания предварительно изготовленных кубов бетона, обжатых в прессе, известными методами неразрушающего контроля (пластической деформации, ударного импульса, упругого отскока), образцов, отобранных из конструкции на участке, на котором предварительно проводятся вышеназванные испытания с последующим их разрушением.

Предприятия-изготовители современных приборов неразрушающего контроля в процессе их конструирования и апробирования формируют базовые градуировочные зависимости на основании результатов параллельных испытаний образцов-кубов, изготовленных из бетонов основного ряда классов с различными видами заполнителей, неразрушающими методами по ГОСТ 22690-88 [1] и затем в прессе (разрушением) по ГОСТ 10180-90 [4].

Приборы оснащаются базовыми градуировочными зависимостями и закладываются в электронную программу прибора либо, если прибор механического действия, поставляются с градуировочными зависимостями в виде графиков, таблиц, формул.

Практика показывает, что значения прочности бетона, определенные приборами неразрушающего контроля, в ряде случаев существенно отличаются от значений прочности бетона, определенных разрушающим контролем образцов, отобранных из обследуемой конструкции.

В работе дан сравнительный анализ результатов определения прочности бетона методами разрушающего и неразрушающего контроля. Определены причины расхождений величин прочности бетона. Определен коэффициент Кс для корректировки базовых градуировочных зависимостей, в соответствии с методикой приложения 9 ГОСТ 22690-88 [1].

Исследовался тяжелый бетон сборных и монолитных железобетонных конструкций строительных объектов Перми и Пермского края.

При испытаниях бетона использованы следующие приборы неразрушающего контроля: гидропресс измерителя прочности бетона «Оникс-ОС» (предприятие-изготовитель – научно-производственное предприятие «Интерприбор», г. Челябинск), реализующий метод отрыва со скалыванием – локального разрушения путем вырыва стандартного анкерного устройства № 3 или № 2; склерометр «ОМШ-1 ВК 15.00.000 ПС» (предприятие-изготовитель – научно-технический центр средств контроля качества «Контрос», г. Солнечногорск Московской области), реализующий метод упругого отскока, измеритель прочности бетона ИПС-МГ4 (предприятие-изготовитель -специальное конструкторское бюро «Стройприбор», г. Челябинск), реализующий метод ударного импульса.

Испытания образцов, отобранных из конструкций, разрушающим контролем, проведены следующими лабораториями:

1. Региональная испытательная лаборатория цементов Пермского государственного технического университета (кафедра строительных материалов и специальных технологий).

2. ООО «Испытательная лаборатория Оргтехстроя».

3. Лаборатория ООО «Краснокамский завод ЖБИ», г. Краснокамск Пермского края.

В табл. 1-4 сопоставлены результаты, полученные при испытаниях бетона конструкций методами разрушающего и неразрушающего контроля, на конкретных объектах. Для подсчета погрешности между лабораторными испытаниями (прессом) и приборами неразрушающего контроля за основной (100 %) принят метод лабораторных испытаний (пресс).

Определение прочности бетона конструкций фундамента насосной станции промышленных стоков ЦБК «Кама» в г. Краснокамске

Прочность бетона, кгс/см %

Номер участка по методу упругого отскока (относительно пресса) по методу ударного импульса (относительно пресса) при лабораторных испытаниях в прессе

1 411,9 406,1 538,0

2 415,4 399,3 637,0

3 408,5 396,3 491,0

Среднее значение 411,93 70 397,11 68 588, 100

Коэффициент уточнения градуировочной зависимости Кс 1,35 1,39 –

Определение прочности бетона контрольных образцов (стандартных кубов), изготовленных на ООО «Краснокамский завод ЖБИ», г. Краснокамск Пермского края (испытания проведены

Но- мер об- разца Прочность бетона образца, кгс/см2 (МПа), при испытаниях Расхождение результатов единичных показаний прочности по прибору ОМШ-1 и в прессе, % Среднее значение прочности бетона, кгс/см2 (МПа), в серии по испытаниям Коэффициент уточнения градуировочной зависимости Кс

методом разрушения (пресс) методом неразрушающего контроля (ОМШ-1) в прессе прибором ОМШ-1

1 440 171 61 553,3 178,3 3,10

Определение прочности бетона диафрагм жесткости монолитного железобетонного здания жилого дома по ул. Вильямса, 37б в Орджоникидзевском районе г. Перми

Этаж Прочность бетона, МПа

по методу отрыва со скалыванием по методу упругого отскока по методу ударного импульса при лабораторных испытаниях в прессе

Цокольный 27,3 25,8 26,7 26,3

1 28,5 30,5 28,8 28,2

2 28,1 25,5 26,1 26,0

3 30,8 30,0 29,5 30,8

Среднее значение 28,7 28,0 27,8 27,8

Коэффициент уточнения градуировочной зависимости Кс – 1,03 1,03 –

Определение прочности бетона конструкций монолитного железобетонного ростверка фундамента здания по ул. Крисанова, 12а в Ленинском районе г. Перми

„ ,, кгс/см2 Прочность бетона, %

Номер участка по методу упругого отскока (относительно пресса) при лабораторных испытаниях в прессе

при наличии поверхностного слоя бетона после удаления поверхностного слоя бетона образцов-цилиндров, отобранных из конструкции

1 141,9 206,1 228,0

2 165,4 219,3 237,0

3 178,5 226,3 241,0

Среднее значение 161,9 217,2 235

Коэффициент уточнения градуировоч- 1,45 1,08 –

ной зависимости Кс

На основании анализа и синтеза результатов испытаний выявлены следующие причины расхождений величин прочности тяжелого бетона на одноосное сжатие методами разрушающего контроля в сравнении с неразрушающими методами контроля:

1. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и приборами неразрушающего контроля ОМШ-1 (методом неразрушающего контроля – упругого отскока) и ИПС-МГ 4 (методом неразрушающего контроля – ударного импульса) объясняется тем, что приборы неразрушающего контроля по условиям испытаний использовались для определения прочности поверхностного слоя. Поверхностный слой характеризуется по составу меньшим количеством крупного заполнителя и большим количеством цементного раствора. Вследствие этого поверхностный слой обладает меньшими, чем основной массив, прочностными характеристиками, и класс бетона поверхностного слоя на одну-две ступени ниже класса бетона основного массива конструкции.

2. Разница в результатах исследований между испытаниями в прессе (методом разрушения – одноосного сжатия) и методом неразрушающего контроля – отрыва со скалыванием (прибор «Оникс-ОС») минимальна и находится в пределах допускаемой относительной погрешности прибора (2 %). Тем самым полученные данные подтверждают возможность использования метода неразрушающего контроля – отрыва со скалыванием, без установления индивидуальных градуировочных зависимостей при использовании стандартного анкерного устройства, что согласуется с требованиями п. 3.14 ГОСТ 22690-88 источника [1]. Анализ данных результатов предполагает также, что на глубине 30-40 мм от поверхности бетонных конструкций прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала при достаточном качестве основных циклов производства работ (укладки, уплотнения, прогрева при отрицательных температурах, выдерживания бетона).

Таким образом установлено, что независимо от способа исследования железобетонных конструкций прочность бетона имеет тенденцию нарастания с поверхности в глубину массива, на некоторой глубине от поверхности прочностные характеристики бетона стабилизируются и основной массив бетона приобретает устойчивую равнопрочность материала. Следовательно, для достоверности получаемых значений прочности неразрушающими методами (пластической деформации, ударного импульса, упругого отскока) необходимо перед испытаниями снимать поверхностный слой бетона.

Установлена устойчивая закономерность: чем выше прогнозируемый (проектный) класс исследуемой конструкции, тем больше разница величин прочности, полученных разрушающим методом (пресс) и неразрушающим методом контроля. Выявленная закономерность предполагает следующее:

1) для малых и средних классов бетона (В7,5-В25) нарастание прочности с поверхности в глубинные слои плавное, т.е. прочность поверхностных слоев соизмерима с прочностью основного массива;

2) для высоких классов бетона (В25-В40) нарастание прочности с поверхности в глубинные слои резкое, т.е. прочность поверхностных слоев значительно ниже прочности основного массива;

3) для малых и средних классов бетона (В7,5-В25) корректно использование неразрушающих методов контроля с базовыми настройками приборов, полученными при сопоставительных испытаниях с разрушающим методом в процессе конструирования прибора на предприятии-изготовителе, согласующимися с требованиями ГОСТ 22690-88 [1];

4) для высоких классов бетона (В25-В40) использование неразрушающих методов контроля допустимо только в строгом соответствии с табл. 1, п.3.14 и прил. 9 ГОСТ 22690-88 [1], т.е. с корректировкой коэффициента Кс градуировочной зависимости для бетонов, отличающихся от испытываемых (по составу, возрасту, условиям твердения, влажности) в соответствии с предлагаемой методикой [1].

1. ГОСТ 22690-88. Бетоны. Определение прочности механическими методами неразрушающего контроля. – М., 1989.

2. ГОСТ 18105-86. Бетоны. Правила контроля прочности. – М., 1987.

3. ГОСТ 28570-90. Бетоны. Методы определения прочности по образцам, отобранным из конструкций. – М., 1991.

4. ГОСТ 10180-90. Бетоны. Методы определения прочности по контрольным образцам. – М., 1991.

5. СП 13-102-2003. Правила обследования несущих строительных конструкций зданий и сооружений / Госкомитет РФ по строительству и жилищнокоммунальному комплексу (Госстрой России). – М., 2004.

ГОСТ 28570-90 Бетоны. Методы определения прочности по образцам, отобранным из конструкций

методы определения прочности бетона

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПО
ОБРАЗЦАМ, ОТОБРАННЫМ ИЗ КОНСТРУКЦИЙ

ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ КОМИТЕТ СССР

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения прочности по образцам,
отобранным из конструкций

Concretes. Methods of strength evaluation
on cores drilled from structures

Дата введения 01.01.91

Настоящий стандарт распространяется на бетоны всех видов по ГОСТ 25192 и устанавливает методы определения их прочности в сборных и монолитных бетонных и железобетонных конструкциях и изделиях (далее – конструкциях), отбора проб из конструкций, изготовления из этих проб контрольных образцов и определения предела прочности бетонов на сжатие, осевое растяжение, растяжение при раскалывании и растяжение при изгибе (далее – прочности) при разрушающих кратковременных статических испытаниях образцов.

Стандарт следует применять, как правило, при инспекционных и экспертных испытаниях прочности бетона в конструкциях действующих и реконструируемых зданий и сооружений.

При производственном контроле прочности бетона конструкций настоящий стандарт следует применять совместно с ГОСТ 18105, в котором установлены правила и нормы отбора проб, твердения и хранения образцов, а также правила оценки прочности бетона на основе результатов испытаний образцов.

Определение прочности ячеистого бетона по образцам, отобранным из конструкций, следует производить по ГОСТ 10180.

1 . СУЩНОСТЬ МЕТОДОВ

1.1 . Прочность бетона определяют измерением минимальных усилий, разрушающих выбуренные или выпиленные из конструкций образцы бетона при их статическом нагружении с постоянной скоростью роста нагрузки, и последующем вычислении напряжений при этих усилиях в предположении упругой работы материала.

1.2.1 . Форма и номинальные размеры образцов в зависимости от вида испытаний бетона должны соответствовать ГОСТ 10180 .

Допускается применение цилиндров диаметром от 44 до 150 мм, высотой от 0,8 до 2,0 диаметров при определении прочности на сжатие, от 0,4 до 2,0 диаметров при определении прочности на растяжение при раскалывании и от 1,0 до 4,0 диаметров при определении прочности на осевое растяжение.

За базовый при всех видах испытаний принимают образец с размерами рабочего сечения (150 ´ 150) мм.

1.2.2 . Минимальный размер образца (диаметр и высота цилиндра, ребро куба, сторона поперечного сечения призмы) должен превышать максимальный номинальный размер крупного заполнителя, использованного для изготовления бетона конструкции, из которой отбирают образец для испытаний, если он не превышает 70 мм не менее чем:

в 2 раза – для образцов, испытываемых на сжатие;

в 3 раза – для образцов, испытываемых на растяжение.

1.3 . Образцы испытывают сериями.

Число образцов в каждой серии должно соответствовать приведенному в табл. 1.

Минимальный размер образца, мм

Число образцов в серии

При определении прочности бетона на растяжение при раскалывании на образцах-призмах, которые последовательно раскалывают по разным сечениям, допускается иметь в серии меньшее число образцов, если общее число испытаний в серии будет не менее указанного в табл. 1.

1.4 . Отклонения от плоскостности опорных поверхностей кубов и цилиндров, прилегающих к плитам пресса при испытаниях на сжатие, не должны превышать 0,1 мм.

1.5 . Отклонения от прямолинейности образующей образцов-цилиндров, предназначенных для испытания на раскалывание, не должны превышать 1 мм.

1.6 . Отклонения от перпендикулярности смежных граней кубов и призм, а также опорных поверхностей и образующих цилиндров, предназначенных для испытания на сжатие, не должны превышать 2 мм.

1.7 . Отклонение линейных размеров образцов от номинальных (по длине ребер кубов, сторон сечения призм, диаметру цилиндров) не должно превышать ± 4 %.

2 . ОТБОР ПРОБ И ИЗГОТОВЛЕНИЕ ОБРАЗЦОВ

2.1 . Пробы бетона для изготовления образцов отбирают путем выпиливания или выбуривания из конструкций или ее частей.

2.2 . Места отбора проб бетона следует назначать после визуального осмотра конструкций в зависимости от их напряженного состояния с учетом минимально возможного снижения их несущей способности. Пробы рекомендуется отбирать из мест, удаленных от стыков и краев конструкций.

После извлечения проб места выборки следует заделывать мелкозернистым бетоном или бетоном, из которого изготовлены конструкции.

2.3 . Выпиливать и выбуривать пробы бетона из конструкций зданий и сооружений следует алмазными дисковыми пилами или коронками, а также твердосплавным инструментом, обеспечивающим изготовление образцов, отвечающих требованиям пп. 1.4 – 1.7 .

2.4 . Участки для выбуривания или выпиливания проб бетона следует выбирать в местах, свободных от арматуры.

При невозможности отбора проб без арматуры допускается наличие арматуры диаметром не более 16 мм в образцах с минимальными размерами поперечного сечения не менее 100 мм. При этом не допускается наличие арматуры:

в образцах, предназначенных для определения прочности бетона на сжатие и осевое растяжение;

в средней трети пролета в образцах-призмах, предназначенных для определения прочности бетона на растяжение при изгибе;

на расстоянии менее 30 мм от предполагаемой плоскости раскола в образцах, предназначенных для определения прочности на растяжение при раскалывании.

2.5 . От каждого из выбранных участков конструкций отбирают не менее одной пробы бетона.

Места отбора проб бетона, размер и число проб, число серий образцов, изготавливаемых из этих проб, следует принимать при производственном контроле прочности по ГОСТ 18105, а в других случаях – по документам, содержащим планы контроля и правила оценки результатов, либо устанавливать экспертным путем.

2.6 . Каждая проба бетона (высверленный керн, выпиленная или вырубленная заготовка) должна быть замаркирована и описана в протоколе по п. 7.1 .

2.7 . Из проб бетона, отобранных из конструкций, изготавливают контрольные образцы для испытаний.

Форма и размеры образцов должны соответствовать требованиям п. 1.2.1, а число образцов в серии – п. 1.3.

Образцы-цилиндры изготавливают из выбуренных кернов, а образцы-кубы и призмы – из проб бетона, выпиленных из конструкции.

2.8 . Изготовленные образцы должны иметь маркировку, отражающую их принадлежность к определенным пробам бетона, а также дополнительную маркировку образца по ГОСТ 10180 . Образцы должны сопровождаться схемой, ориентирующей положение образца в конструкции, из которой он отобран, и направление бетонирования конструкции.

3 . ТРЕБОВАНИЯ К ОБОРУДОВАНИЮ ДЛЯ ИЗГОТОВЛЕНИЯ И ИСПЫТАНИЯ ОБРАЗЦОВ

3.1 . Оборудование для изготовления образцов

3.1.1 . Для выбуривания образцов из бетона конструкций применяют сверлильные станки типа ИЭ 1806 по ТУ 22-5774 с режущим инструментом в виде кольцевых алмазных сверл типа СКА по ТУ 2-037-624, ГОСТ 24638 или твердосплавных кольцевых сверл по ГОСТ 11108 .

3.1.2 . Для выпиливания образцов из бетона конструкций применяют распиловочные станки типов УРБ-175 по ТУ 34-13-10500 или УРБ-300 по ТУ 34-13-10910 с режущим инструментом в виде отрезных алмазных дисков типа АОК по ГОСТ 10110 или алмазных сегментных кругов по ГОСТ 16115 , или фрез по ТУ 2-037-415 или ТУ 2-037-391.

3.2 . Средства измерений, испытательные машины, устройства и приспособления для испытаний на сжатие и растяжение следует принимать по ГОСТ 10180 .

3.3 . Допускается применение другого оборудования и инструмента для изготовления образцов из бетона конструкций, обеспечивающих изготовление образцов, отвечающих требованиям п. 2.7 и ГОСТ 10180 .

3.4 . Метрологическую аттестацию оборудования для изготовления образцов проводят по ГОСТ 24555 , испытательных машин, устройств и приспособлений для испытаний образцов на сжатие и растяжение – по ГОСТ 10180 , а поверку средств измерений – по ГОСТ 8.326 .

4 . ПОДГОТОВКА К ИСПЫТАНИЯМ

4.1 . В помещении, где проводят испытания образцов, следует поддерживать температуру воздуха (20 ± 5) ° С и относительную влажность воздуха не менее 55 %.

4.2 . Образцы бетона испытывают при одном из двух заданных состояниях бетона: воздушно-влажностном или насыщенном водой.

При испытаниях в воздушно-влажностном состоянии образцы предварительно после их изготовления (выбуривания или выпиливания) мокрым способом выдерживают в лабораторных условиях по п. 4.1 не менее 6 сут. При испытаниях образцов в насыщенном водой состоянии образцы предварительно выдерживают в воде температурой (20 ± 5) ° С не менее 48 ч, а после извлечения их из воды и промокания влажной тканью испытывают.

4.3 . Перед испытанием образцы осматривают, устанавливая наличие дефектов в виде трещин, околов ребер, раковин и инородных включений, а также следов расслоения и недоуплотнения бетонной смеси. Результаты визуального осмотра записывают в журнал испытаний по п. 7.2 . В случае необходимости фиксируют схему расположения и характеристику дефектов и в соответствии с ГОСТ 10180 принимают решение о возможности испытания образцов или об их отбраковке.

4.4 . На образцах выбирают и отмечают грани, к которым должны быть приложены усилия в процессе нагружения. При этом следует:

опорные грани образцов-кубов, предназначенных для испытания на сжатие, выбирать так, чтобы сжимающая сила при испытании совпадала с направлением сжимающей силы, действующей при эксплуатации на конструкцию, из которой отобран образец;

плоскость изгиба образцов-призм при испытании на растяжение при изгибе следует выбирать так, чтобы она совпадала с плоскостью изгиба конструкции при ее эксплуатации.

4.5 . Линейные размеры образцов измеряют с погрешностью не более 1 %.

Результаты измерений линейных размеров образцов записывают в журнал испытаний.

4.6 . Отклонения от прямолинейности образующей образцов-цилиндров определяют с помощью поверочных плиты или линейки и щупов путем установления наибольшего зазора между боковой поверхностью образца и поверхностью плиты или линейки.

4.7 . Отклонения от плоскостности опорных поверхностей образцов, отклонения от перпендикулярности смежных граней образцов-кубов и образцов-призм, а также опорных и боковых поверхностей цилиндров определяют по методике ГОСТ 10180 или ГОСТ 26433.1 .

4.8 . Если поверхности образцов-кубов или образцов-цилиндров, к которым прикладывают усилия, не удовлетворяют требованиям пп. 1.4 и 1.5 , они должны быть выравнены. Для выравнивания поверхностей применяют шлифование или нанесение слоя быстротвердеющего материала по методике приложения.

4.9 . Для определения прочности на растяжение при раскалывании на боковые грани образцов наносят осевые линии, с помощью которых образец центрируют при испытании.

4.10 . Перед испытанием образцы взвешивают для определения их средней плотности по ГОСТ 12730.1 .

4.11 . Все образцы одной серии должны быть испытаны в одном возрасте.

5 . ПРОВЕДЕНИЕ ИСПЫТАНИЙ

Испытание образцов на сжатие и все виды растяжения, а также выбор схемы испытания и нагружения производят по ГОСТ 10180.

6 . ОБРАБОТКА РЕЗУЛЬТАТОВ

6.1 . Прочность бетона испытанного образца с точностью до 0,1 МПа (1,0 кгс/см 2 ) при испытании на сжатие и с точностью до 0,01 МПа (0,1 кгс/см 2 ) при испытаниях на растяжение вычисляют по формулам 1 – 4 :

методы определения прочности бетона ( 1 )

на осевое растяжение

методы определения прочности бетона ( 2 )

на растяжение при раскалывании

методы определения прочности бетона ( 3 )

на растяжение при изгибе

методы определения прочности бетона ( 4 )

где F – разрушающая нагрузка, Н (кгс);

А – площадь рабочего сечения образца, мм 2 (см 2 );

а , b , l – соответственно ширина и высота поперечного сечения призмы и расстояние между опорами при испытании образцов на растяжение при изгибе, мм (см).

6.2 . Для приведения прочности бетона в испытанном образце к прочности бетона в образце базового размера и формы, прочности, полученные по формулам 1 – 4, пересчитывают по формулам 5 – 8 :

методы определения прочности бетона ( 5)

на осевое растяжение

методы определения прочности бетона ( 6 )

на растяжение при раскалывании

методы определения прочности бетона ( 7 )

на растяжение при изгибе

методы определения прочности бетона ( 8 )

где h 1 и h 2 – коэффициенты, учитывающие отношение высоты цилиндра к его диаметру, принимаемые при испытаниях на сжатие по табл. 2 и при испытаниях на растяжение при раскалывании по табл. 3 и равные единице для образцов другой формы;

a , b , g и d – масштабные коэффициенты, учитывающие форму и размеры поперечного сечения испытанных образцов, которые принимают по табл. 4 и 5 или определяют экспериментально по ГОСТ 10180.

методы определения прочности бетона

методы определения прочности бетона

Форма и размеры образцов: ребро куба или сторона квадратной призмы, мм

Значение масштабных коэффициентов для образцов, испытанных на

растяжение при раскалывании g

растяжение при изгибе d

осевое растяжение b

Все виды бетонов

методы определения прочности бетона

Коэффициент a при испытаниях на сжатие цилиндров диаметром, мм

6.3 . Прочность бетона в серии образцов определяют как среднее арифметическое значение:

в серии из двух образцов – по двум образцам;

в серии из трех образцов – по двум наибольшим по прочности образцам;

в серии из четырех образцов – по трем наибольшим по прочности образцам;

в серии из шести образцов – по четырем наибольшим по прочности образцам.

Примечание. При отбраковке дефектных образцов прочность бетона в серии образцов определяют по всем оставшимся образцам.

6.4 . Значения коэффициентов перехода от прочности бетона при одном виде испытаний к другому следует определять экспериментально по ГОСТ 10180 .

7 . ОТЧЕТ ОБ ИСПЫТАНИЯХ

Отчет об испытаниях должен состоять из протокола отбора проб, результатов испытания образцов и иметь ссылку на настоящий стандарт.

7.1 . Протокол отбора проб бетона должен содержать:

дату и номер протоколов отбора пробы;

наименование конструкции, из которой отобрана проба;

схематическое изображение места отбора пробы;

характеристику качества поверхности конструкции в месте отбора пробы;

наименование организации и фамилию ответственного лица за отбор пробы;

рекомендуемые дополнительные данные:

дату изготовления конструкции;

проектный класс или марку бетона;

максимальную крупность заполнителя;

влажностные условия эксплуатации или хранения конструкции после изготовления;

тип оборудования, использованного для отбора проб бетона (изготовления образцов) и другие данные.

7.2 . При испытаниях образцов в лаборатории ведут журнал, в котором фиксируют:

дату и условия получения образца;

организацию, приславшую образец на испытания;

номер и дату протокола об отборе пробы бетона;

геометрические характеристики образцов (линейные размеры, отклонения от плоскостности и перпендикулярности);

дефекты структуры бетона (трещины, отслоения, поры, раковины и др.);

тип, диаметр, длину, расположение арматурных стержней;

тип подготовки рабочих поверхностей образцов (обрезка, распиловка, шлифовка, выравнивание быстротвердеющим составом и его характеристика);

условия хранения образцов в лаборатории до испытания;

площадь рабочего сечения образца;

среднюю плотность образца в момент испытания;

влажность в момент испытание и среднюю плотность в сухом состоянии для легкого и ячеистого бетона;

показания силоизмерителя испытательной машины;

прочность бетона образца;

прочность бетона образца, приведенную к базовому образцу;

среднюю прочность серии образцов;

характер разрушения образца;

подпись лица, ответственного за испытание.

ПРИЛОЖЕНИЕ

ПОДГОТОВКА ОПОРНОЙ ПОВЕРХНОСТИ ОБРАЗЦОВ БЕТОНА ПУТЕМ НАНЕСЕНИЯ СЛОЯ ВЫРАВНИВАЮЩЕГО СОСТАВА

1 . Опорные поверхности в случаях, когда отклонения их поверхности от плоскости или прямолинейности не соответствуют требованиям пп. 1.4 и 1.5 , могут быть исправлены нанесением на них слоя выравнивающего состава.

2 . В качестве выравнивающих составов следует использовать:

растворы на основе серы;

3 . Цементнопесчаные растворы изготавливают из смеси равных объемов портландцемента по ГОСТ 10178 марки не ниже 400 и кварцевого песка по ГОСТ 8736 , просеянного через сито с отверстиями 0,315 мм, при водоцементном отношении не более 0,4.

Водоцементное отношение для цементного теста должно быть не более 0,3.

Растворы и цементное тесто перемешивают вручную не менее 3 мин.

4 . Растворы на основе серы изготавливают из смеси равных объемов технической серы по ГОСТ 127 и наполнителя, просеянного через сито 0,315. В качестве наполнителя используют:

цементы по ГОСТ 10178 или ГОСТ 22266;

муку кварцевую по ГОСТ 9077;

муку андезитовую по ТУ 6-12-101.

Влажность наполнителя должна быть не выше 5 % по массе. Сухую смесь серы и наполнителя перемешивают, помещают в металлическую емкость и нагревают до температуры 140 – 150 ° С на плитке или в сушильном шкафу. При этой температуре смесь расплавляется, после чего ее тщательно перемешивают.

5 . Эпоксидные композиции изготавливают из эпоксидной смолы по ГОСТ 10587 , наполнителя по п. 4 и отвердителя – полиэтиленполиамина (ПАВА) по ТУ 6-02-594 в соотношении по массе 1:1:0,15.

Композицию тщательно перемешивают вручную до получения однородной консистенции и используют ее не более 30 мин.

6 . Подготовленные по пп. 3 – 5 выравнивающие составы выкладывают на металлическую или стеклянную (кроме серных растворов) пластину, размеры которой не менее чем на 50 мм превосходят размеры образца и поверхность которой имеет отклонение от плоскостности не более 0,06 мм на 100 мм длины. Пластина должна иметь борт для удержания выравнивающего состава. При применении растворов на основе серы пластина должна быть предварительно подогрета до той же температуры, что и раствор. При применении эпоксидных композиций на пластину предварительно кладут лист писчей бумаги.

7 . Толщина слоя выравнивающего состава на образце должна быть не более 5 мм.

Допускается выкладывание на пластину более толстого слоя выравнивающего состава с последующим вдавливанием в него образца на глубину, обеспечивающую получение на образце слоя требуемой толщины.

8 . Образец устанавливают на пластину с выравнивающим составом опорной поверхностью вертикально относительно его продольной оси, вдоль которой будет приложено усилие при испытании.

9 . Для ускорения твердения выравнивающих составов допускается введение ускорителей твердения в цементно-песчаные растворы, например, CaCl 2 в объеме до 3% от массы цемента или прогрев эпоксидных композиций в сушильном шкафу при температуре 80 – 90 ° С в течение 4 – 6 ч.

Растворы на основе серы не требуют ускорения твердения и образцы могут быть испытаны непосредственно после нанесения на них и остывания состава.

10 . Если образцы выравнивают с двух сторон, то это может быть выполнено либо поочередно, либо одновременно. При поочередном нанесении образец с нанесенным на одну из его опорных плоскостей затвердевшим составом снимают с плиты и затем повторяют процедуру нанесения состава на вторую опорную поверхность по п. 8 . К моменту снятия образца с плиты выравнивающий состав должен иметь прочность не менее 2,5 МПа. При одновременном выравнивании обеих поверхностей образец не переворачивают. После его установки на нижнюю плиту с выравнивающим составом этот же состав наносят на верхнюю поверхность образца и накрывают второй верхней плитой, обеспечивая ее параллельность относительно нижней плиты.

11 . Излишки выравнивающего состава, выступающие за контуры опорной поверхности образца, удаляют либо до затвердевания на плите ножом, либо после затвердевания и снятия образца с плиты напильником или наждачным камнем.

12 . МЕРОПРИЯТИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

Все работы по получению расплава серы, приготовлению мастики и нанесению ее торцы образцов должны производиться в лабораторных помещениях, оборудованных вытяжными шкафами.

Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны лабораторного помещения не должны превышать значений, указанных в ГОСТ 12.1.005.

Расплавленная сера и незастывшая мастика являются источниками ожогов.

Все лица, работающие с серой и серным расплавом, должны быть обеспечены средствами индивидуальной защиты.

В лабораторном помещении должны быть средства оказания первой медицинской помощи.

Обслуживающий персонал должен проходить инструктаж и проверку знаний по технике безопасности выполнения работ.

1 . РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

Государственным комитетом СССР по народному образованию

Министерством энергетики и электрификации СССР

Министерством транспортного строительства СССР

М.И. Бруссер, канд. техн. наук (руководитель темы); Л.А. Малинина, д-р техн. наук; С.А. Подмазова, канд. техн. наук; И.М. Дробященко, канд. техн. наук; Г.В. Сизов, канд. техн. наук; Н.Ф. Шестеркина, канд. техн. наук; О.В. Белоусов, канд. техн. наук; В.И. Шарстук, канд. техн. наук; М.Ю. Лещинский, д-р техн. наук; Ю.Г. Хаютин, д-р техн. наук; В.А. Дорф, канд. техн. наук; И.С. Кроль; Э.Г. Соркин, канд. техн. наук; Р.О. Красновский, канд. техн. наук; А.М. Шейнин, канд. техн. наук; С.П. Абрамова; В.В. Тишенко; И.Н. Нагорняк

2 . ВНЕСЕН Научно-исследовательским проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

3 . УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 24.05.90 № 50.

4 . ВЗАМЕН ГОСТ 10180 -78 в части определения прочности по образцам, отобранным из конструкций

5 . Стандарт соответствует СТ СЭВ 3978-83 в части испытаний образцов, отобранных из конструкций, и международным стандартам ИСО 1920-76, ИСО 4012-78, ИСО 4013-78, ИСО 4108-80, ДИС/ИСО 7034.

6 . ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Понравилась статья? Поделиться с друзьями:
Строительство и ремонт
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять
Отказаться