Как национальный реестр строителей влияет на прозрачность и качество строительстваООО - Первые шаги к успешному бизнесуСоциальная ответственность и СРО: вклад в обществоЭффективность проектного менеджмента в строительстве: влияние СРОДиалог с властью: СРО как защитник интересов строительной отраслиТрансформация городской среды через проекты СРОСРО в строительстве: не только правила, но и этикаНОПРИЗ в эпицентре инновацийНОСТРОЙ и зеленое будущееРоль НОПРИЗ в формировании экспортно-ориентированной промышленности России

бетон на сжатие

Пол, подача бетонной смеси

Содержание

бетон на сжатие

Полезная информация:

Прочность бетона на сжатие – это основной показатель, которым характеризуют бетон. В настоящее время, встречаются две системы выражения данного показателя, а именно:

Класс бетона, B – это так называемая кубиковая прочность (т.е. сжимаемый образец в форме куба) показывающая выдерживаемое давление в МПа, с долей вероятности разрушения не более 5 единиц из 100 испытуемых образцов. Обозначается латинской буквой B и числом показывающим прочность в МПа. Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции».

Марка бетона, M – это предел прочности бетона на сжатие, кгс/см 2 . Обозначается латинской буквой М и числами от 50 до 1000. Максимальное допустимое отклонение прочности бетона 13,5%. Согласно ГОСТ 26633-91 «Бетоны тяжёлые и мелкозернистые. Технические условия» установлено следующее соответствие марки бетона его классу.

Соответствие марки бетона (М) классу (В) и прочности на сжатие

Марка бетона, М

Класс бетона, B

Прочность, МПа

Прочность, кг/см 2

Определение Марки и Класса бетона

Марка бетона и класс определяются спустя 28 дней со дня заливки, при нормальных условиях, или расчет ведется с учетом коэффициента.

Определение прочности бетона по Шору склерометром (молотком Шмидта)

Одним из наиболее распространенных и эффективных способов быстрого измерения прочности бетона на сжатие или его марку, является измерение склерометром, или как его еще называют, молоток Шмидта. Контроль прочности бетона таким методом определяется по ГОСТ 22690-88 “Бетоны определение прочности механическими методами неразрушающего контроля”. Так называемый, метод измерения твердости по Шору методом отскока.

Принцип действия молотка Шмидта основан на измерении прочности бетона методом упругого отскока. Боек бъется о поверхность бетона и отскакивает. Боек устанавлвает указатель на шкале склерометра на максимальную высоту отскока. Таким образом, сняв несколько проб, вычисляется средний показатель, определяющий марку бетона.

К сожалению, данный метод не дает точных показаний так как на высоту отскока бойка влияют и прочие факторы такие как шероховатость поверхности, толщина испытуемого образца, методов уплотнения бетона при его заливке, и соответвенное его общая структура и прочие факторы. Так что погрешность в показаниях склероскопу (склерометру) практически неизбежна, но, к счастью, она очень мала.

Приблизительное соответствие высоты упругого отскока по показаниям шкалы молотка Шмидта (склерометра) классу бетона (B) и его марке (M) приведены в следующей таблице:

Соответствие марки бетона классу по прочности на сжатие

Застывший бетон имеет специфический состав, разнообразные компоненты которого относят его к конгломератным материалам. Данное свойство свидетельствует об особенности раствора, а именно его качестве. Надежность бетонной конструкции определяется его совместимостью с другими материалами. В зависимости от этого, существуют различные классы и марки бетонного раствора, применение которых характерно определенному виду строительства. Предлагаем детально ознакомиться с каждым классом и маркой бетона по его прочности на осевое растяжение и сжатие.

Суть и общая характеристика класса бетона

В узком понимании в классах бетонной смеси определяется нагрузка, которую может выдержать одна единица площади поверхности при отсутствии повреждений. Единицы измерения устанавливали на протяжении многих лет. На сегодняшний момент показатели класса определяются в МПа.

Способ определения крепости раствора одинаков как для его класса, так и для марки. При испытаниях используются в специальных лабораториях, путем экспериментов с образцами материалов. С помощью специальных приспособлений производится работа по установлению максимального усилия на образец, при котором начинается его разрушение. Исходя из полученных данных, усилие приравнивается к давлению.

Для достижения правильных результатов необходимо учитывать соотношение вектора нагрузки и оси образца. С этой целью нижние стороны поверхности пресса и бетона помечаются осями, которые должны совпадать. Согласно ГОСТам, выделяют 18 видовых классов бетонного раствора, зависимо от прочности на сжатие. Например, бетон В35. Данное обозначение означает его прочность при давлении 35 МПа.

Марка бетона – суть и общая характеристика

В случае если класс изделия, как показатель прочности не учитывается, используется стандарт надежности при помощи марки раствора. Суть данного определения состоит в отображении определенного свойства материала. Как и в предыдущем случае, это свойство определяется с помощью испытаний над образцами. Различают два общих значения определения марки:

  • минимальное: применяется для определения прочности, стойкости к влаге и низким температурам;
  • максимальное: используется для обозначения плотности.

Однако следует запомнить, что с помощью марки невозможно определить колебания крепости на всей бетонной поверхности.

Соответствие марки бетона классу

Определенный класс бетона по прочности на сжатие имеет свою соответствующую марку. На практике была составлена таблица этого соотношения. Например, согласно таблице, марке М50 соответствует класс В3,5.

Коэффициент перевода класса бетона в соответствующую марку – 13,1.

Чаще всего при строительстве для определения прочности применяется термин «класс». В отличии от марок в этом параметре вычислена гарантированная крепость материала.

Выбор бетона

Строительство определенной бетонной конструкции требует четко установленной крепости бетонного раствора. Среди них выделяют:

  • подбетонное покрытие — В7,5;
  • фундамент: в помещениях с низкой влажностью – от В15; в помещениях с высокой влажностью – от В22,5;
  • стены, а также другие конструкции на улице – учитывается морозостойкость: для районов со стабильно теплой температурой воздуха — F150; для районов с температурой воздуха ниже -40С — F200;
  • внутренние поверхности – от В15;
  • железобетонные конструкции – от В15 (предварительно напряженные) – от В20.

Все вышеперечисленные правила установлены строительными стандартами. Однако они могут отличаться в зависимости от технических расчетов. Так, одно здание может быть построено на бетоне разной прочности – материалы на нижних этажах должны быть значительно выше от материалов верхних этажей.

Одним из быстрых и удобных способов определения прочности бетона является испытание путем сжатия склерометром или молотком Шмидта. Принцип его работы заключается в ударе бойка по бетону и его отскоке. Вследствие этого специальный указатель перемещается на определенную высоту, которая соответствует установленной марке бетона.

Несмотря на простоту в использовании, данное приспособление не пользуется популярностью, поскольку не может дать точных значений. Это возникает от влияния на испытание других факторов, таких как характер поверхности образца, его толщина, структура и уплотнение.

Заключение

Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.

Следует запомнить, что прочность – это не стабильная величина. В процессе твердения бетон становится крепче. Все эти правила следует обязательно учитывать при строительстве.

Прочность бетона

Показатели прочности бетона

Прочность бетона на сжатие

Прочность бетона (способность сопротивляться разрушению) на сжатие – основной параметр, определяющий выбор конкретной марки этого стройматериала. При основных нагрузках на бетон в ходе эксплуатации конструкций зданий и сооружений — вертикально направленных, предел прочности бетона именно на сжатие должен иметь максимально высокие значения среди всех рассматриваемых вариантов.

Марочная (проектная) прочность бетона доводиться искусственным камнем по истечении 28 дней (4 недели). Достижение прочности бетона во времени существенно зависит от внешних условий твердения, таких как влажность и температура: чем выше температура, тем быстрее бетон достигает отметки нормативной прочности.

Прочность бетона и его состав

Зависимость прочности бетона на сжатие от его состава в основном определяется рациональным подбором заполнителей, причем учитывается не только их прочностные характеристики, но и размер зерна. В итоге, для строительства наиболее ответственных объектов (мосты, гидротехнические сооружения, высотные здания) для формирования смеси используются дорогостоящие крупнозернистые твердые породы (диаметр зерна 80-100 мм), обеспечивающие максимальную (нормативную) прочность бетона в МПа.

Средняя прочность бетона на сжатие достигается применением в качестве заполнителя смеси гравия со средним размером зерна (5-20 мм), желательно еще и с предварительной очисткой заполнителя струей воды. В качестве мелкого заполнителя для таких марок бетона применяется смесь крупного и мелкого песка, повышающих плотность цементного теста и одновременно предел прочности бетона при сжатии за счет снижения количества полостей. Кроме этого, снижение размеров и числа полостей в застывающей смеси существенно продлевает срок службы бетона.

Прочность бетона на растяжение

Проектная прочност бетона на растяжение существенно меньше, чем на сжатие, и зачастую случаев при проектировании не учитывается, так как ее важность ограничивается рассмотрением возможности растрескивания материала при перепадах температуры. Значение прочности бетона на растяжение варьируется в пределах от 1/20 его нагрузочной способности у «молодого» бетона до 1/8 у «старого» бетона. Наибольшее значение прочность бетона на растяжение имеет при подборе материала для дорожного строительства, производимого без дополнительного армирования. В данных случаях при неверном выборе марки материала вполне реальна деформация бетона и быстрое разрушение дорожного покрытия.

Прочность бетона на изгиб

Показатель прочности бетона на изгиб, которая тоже существенно меньше прочности на сжатие, имеет значение на стадии начального возведения несущего контура конструкции. Применение металлической арматуры при формировании несущего каркаса существенно повышает коэффициент прочности бетона на изгиб. Заказать бетон с любыми прочностными и эксплуатационными характеристиками по самой выгодной цене в Нижнем Новгороде можно у компании «Первый Бетонный Завод» – непосредственного производителя широкого спектра марок этого стройматериала.

Прочность бетона на сжатие

При изготовлении бетона и железобетона, в заводских лабораториях производится контроль на выявление качественных характеристик. Наиболее значимым показателем качества является прочность на сжатие, по выявленным показателям которой бетону присваивается класс. Например, бетон класса В15 означает, что средняя прочность, полученная при испытании, не менее 15 Мпа, или 200 Кгс/см 2 .

Подготовка к испытанию определения прочности бетона

Для того чтобы выявить прочность бетона на сжатие, лаборанту потребуется изготовить контрольные кубы-образцы с размером сторон 15 х 15 см. Для одного класса бетона нужно не менее 3 образцов, по которым высчитывается средний результат.

Для изготовления кубов, в лаборатории имеются специальные металлические формочки, которые раз в год проверяются на отсутствие повреждений и отклонений по габаритам. Все нормативные допуски регламентируются ГОСТами.

Перед тем как формочки заполняются контрольным составом бетона, лаборант смазывает металлическую поверхность специальной смазкой.

Процесс формования

Проба контролируемой смеси, берется из трех разных мест одного замеса, смешивается в однородную массу. После тщательного перемешивания, бетон укладывается в подготовленные формы. Лаборант тщательно трамбует смесь специальным арматурным стержнем. В дополнении, производится вибрирование на лабораторной виброплощадке. Поверхность заглаживается мастерком, чтобы не допустить наличие наплывов.

Твердение образцов

После укладки смеси, форму со свежеуложенным бетоном, оставляют в покое до схватывания. На следующие сутки лаборант осторожно распалубливает формочки, чтобы у граней кубов, при помощи которых будет выявляться прочность бетона при сжатии, не появилось сколов. Теперь образцы укладывают в лабораторные шкафы на 28 дней. Температура в лаборатории должна быть 18-20 градусов, а влажность в шкафах не менее 80 процентов.

Испытание образцов из бетона по прочности на сжатие

Для испытания разрушающим методом, используют лабораторный пресс. Образцы очищаются от наплывов, опилок. Производится определение массы и размеров сторон, с точностью до грамма и миллиметра соответственно.

Кубы помещаются между пластинами пресса строго по центру. Лаборант включает оборудование, постепенно подается давление на сжимающую пластину.

Как только образец треснул, или полностью разрушился, лаборант останавливает пресс. На мониторе фиксируется значение, которое применяется для подсчета по формуле, максимально разрушающей нагрузки.

Обработка результата

После выявления бетонной прочности на сжатие, лаборант присваивает класс или марку бетону. Все показатели обязательно записываются в контрольный журнал.

Благодаря проводимым испытаниям, в лабораториях контролируют не только выпускаемый производством бетон, но и корректируют подобранные составы бетона.

Марки Бетона

Важнейшим свойством бетона является прочность.Лучше всего бетон сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в некоторых конструкциях учитывается прочность на растяжение или на растяжение при изгибе.

Прочность бетона при сжатии характеризуется классом или маркой (которые определяют в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может определяться и в другом возрасте, например 3; 7; 60; 90; 180 суток.

В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%.

Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0,95 и имеет следующие значения: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40; В50; В55; В60.

Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПах10).

Тяжелый бетон имеет следующие марки при сжатии: М50; М75; М100; М150; М200; М250; М300; М350; М400; М450; М500; М600; М700; М800.

Компания «СТРОЙРЕСУРС СК» производит марки бетона от М50 до М400.

При проектировании конструкций обычно назначают класс бетона, в отдельных случаях — марку. Соотношение классов и марок для тяжелого бетона по прочности на сжатие приведены в таблице

Прочность бетона на сжатие и растяжение

Прочность бетона является самым важным показателем его качества

[ Нажмите на фото
для увеличения ]

Основы прочности бетона

По своей структуре бетон неоднородный материал и поэтому под действием внешней нагрузки он находится в сложном напряженном состоянии. Набор прочности бетоном происходит в течение нескольких недель с его изготовления. При сжатии бетонного образца, воспринимают нагрузку более жесткие частицы, обладающие большим модулем упругости. По плоскостям соединения этих частиц возникают силы, способствующие нарушить их связь. В тоже время в ослабленных пустотами и порами местах происходит концентрация напряжения. Согласно теории упругости вокруг отверстий в материале, находящемся под действием сжатия возникает концентрация уравновешивающих сжимающих и растягивающих напряжений, параллельных сжимающей силе.

Так как бетон содержит много пустот и пор, то растягивающие напряжения у одной поры передаются на соседние, в результате чего в испытываемом образце при сжатии кроме продольных сжимающих напряжений возникают и растягивающие напряжения в поперечном направлении. Именно в поперечном направлении вследствие разрыва бетона происходит разрушение сжимаемого образца. Сначала появляются микроскопические трещины по всему объему сжимаемого образца, которые с возрастанием нагрузки соединяются, образуя трещины параллельные направлению действия сжимающей силы или под небольшим наклоном. Затем трещины раскрываются, и наступает разрушение бетонного образца.

Согласно результатам испытаний опытных образцов, прочность бетона на сжатие в 10 – 15 раз больше, чем прочность бетона при растяжении. Кроме того с увеличением класса бетона уменьшается относительная прочность при растяжении. Так же опыты показывают еще больший разброс прочности при испытании на растяжение по сравнению со сжатием и коэффициенты вариации прочностей бетонов.

Такие факторы, как увеличение количества цемента в бетонной смеси, применение шероховатого щебня, уменьшение водоцементного соотношения повышают прочность бетона при растяжении, что можно увидеть на графике набора прочности бетоном.

Класс бетона на сжатие и растяжение

В зависимости от соответствующего подбора состава и последующего испытания контрольных образцов определяют класс и марку бетона. Бетон имеет высокое сопротивление сжатию, вследствие чего этот материал широко применяют в различных железобетонных конструкциях.
Класс бетона по прочности на сжатие – это временное сопротивление, полученное в результате испытания на сжатие бетонных образцов кубической формы с размером ребра 150 мм, в возрасте 28 дней и при температуре их хранения 200 С.

Согласно ГОСТу установлены следующие классы по прочности бетона на сжатие.

Для легких бетонов: В10; В12,5; В15; В30; В20; В35; В40; где цифры обозначают давление в МПа.
Для тяжелых бетонов: В10; В12,5; В15; В30; В20; В35; В40; В50; В45; В55; В60.
В том же диапазоне до В40 для бетонов мелкозернистой структуры на песке с модулями крупности 2,1 и выше.
До В30 в том же диапазоне для мелкозернистых бетонов с модулем крупности не более 1.

Оптимальные значения прочности бетона на сжатие выбирают с учетом технико-экономических соображений: типа железобетонной конструкции, способа ее изготовления, условий эксплуатации и т. д.
Классы бетона по прочность на растяжение В1,2; В1,6; В2,4; В2; В2,8; В3,2 характеризуют прочность бетона на растяжение, при этом учитывают статистическую изменчивость прочности.

Марки бетона по прочности

Вопрос о качестве и прочности бетона неизменно возникает в процессе его выбора и покупки. По мере развития технологий создавался весьма обширный ассортимент марок этого строительного материала.

Каждый вид бетона предназначен под конкретные условия его использования. Есть более универсальные растворы или для специальных задач.

Определяющим показателем при покупке бетонной смеси являются условия и задачи ее использования. Для бетонных растворов существует два классифицирующих обозначения – марка и класс. Они информируют покупателя о свойствах строительного материала. Первая – это значение средней прочности, а второй — гарантировано обеспеченная прочность, которая обозначает, что свойства бетонных изделий обеспечиваются в 95 и больше случаях из 100.

Марка и класс определяется значениями:

  • стойкости к сжатию (проектная, марочная);
  • морозоустойчивости, воздействия высоких температур, влагонепроницаемости.

Этот индекс обозначается в цифровом значении и буквой М. Существует обширный перечень марок бетона марок от 50 до 1000, наиболее часто используется около десятка. Для свойств бетона определяющими условиями являются количество и качество цементной смеси в составе порошка. Марка зависит от расчетной прочности на сжатие — это значение в кгс/см2 на момент затвердевания раствора (на 28 день).

Чем больше цифра в индексе, тем бетон прочнее. Это значит, что он имеет больше цемента лучшего качества. Такой бетон дороже. Поэтому основная задача при выборе – найти баланс между ценой и требуемыми свойствами при возведении конкретного сооружения.

С раствором высокой прочности труднее работать – смесь быстрее сохнет, а это чревато последствиями при медленной работе: доставлять раствор и работать с ним нужно быстрее.

Класс обозначается буквой В и цифровым индексом после него. Список классов бетона тоже достаточно внушительный – от 3,5 до 80 (всего 21), это зависит от его разделения по прочности на нагрузку, возникающую от сжатия, но наиболее популярными стали тоже около десятка позиций (В15; В20; В25; В30; В40 и т. д.) Цифра означает показатель МПа (мегапаскали).

Каждый класс можно приравнять к конкретной марке и наоборот. В большинстве случаев в проектных документах указывают именно его, а не марку бетона, а в заказах на приобретении смеси – наоборот.

Соотношение маркировки

Лучше всего эти показатели отобразить таблицей:

Табл. Соотношения марка-класс

Условия, виды прочности

Основным свойством, характеризующим бетон, является его прочность. Она измеряется в МПа (мегапаскали) или кгс/см2. Прочность зависит от таких составляющих:

  • качество и состав смеси. Чем выше качество и составляющая цемента, тем прочнее бетон;
  • условия перемешивания. Недостаточно продолжительное перемешивание снижает качество;
  • количество воды. Чем больше воды содержится в перемешиваемом растворе, тем меньшей будет его прочность;
  • форма и фракция зерен. При неправильной форме зерен и большей их шероховатости сцепление лучше, соответственно бетон крепче;
  • способ и порядок укладки;
  • способ трамбовки. Утрамбованный вибраторами бетон лучше;
  • твердость растет с возрастом.

Хорошую прочность бетону обеспечивает также влажная среда.

Классификация

Есть такие виды прочности:

  • проектная, когда допускается полная нагрузка на бетон, предусмотренная нормативными документами (за умолчанием — после 28 дней);
  • нормированная — показатель, определяемый в ГОСТах или ТУ;
  • требуемая — минимально допустимое значение для использования, устанавливаемое лабораториями предприятий;
  • фактическая — среднее значение по результатам испытаний;
  • отпускная, когда разрешена отгрузка изделия потребителю;
  • распалубочная, когда возможна выемка бетона из форм.

Непосредственно к качеству и марке бетона относятся прочности:

  • на сжатие;
  • на изгиб;
  • на осевое растяжение;
  • передаточная.

Их рассмотрим подробнее.

Прочность на сжатие

Бетон подобен природному камню: он имеет лучшую сопротивляемость сжатию, чем растяжению. Критерием прочности для бетона является предел его выдержки при сжатии. Это наиболее значимый показатель качества раствора. Например, бетон класса В15, марки М200 имеет среднюю стойкость сжатию 15 МПа или 200 кгс/м2, В25 – 25 МПа или 250 кгс/м2 и так далее.

Для определения этого показателя создают кубы-образцы, их помещают под лабораторный пресс. Постепенно увеличивают давление, и как только образец треснул – на экране прибора фиксируется значение этой характеристики.

Определяющим условием для присвоения класса бетона становится расчетный показатель по прочности на сжатие. Бетонная смесь высыхает и затвердевает долго – 28 дней. Вообще, этот процесс может длиться несколько лет, но именно на 28 день раствор приобретает свои основные качества. По окончанию этого срока смесь достигает показателя, определяемого ее маркой (прочность проектная или расчетная).

Прочность на сжатие — это характеристика механических свойств бетона, устойчивости к нагрузкам. Это показатель границы сопротивления затвердевшего раствора к механическому воздействию сжатия в кгс/м2. Смесь М800 имеет наибольшую прочность, М15 – наименьшую.

Прочность на изгиб

Этот показатель увеличивается с ростом числового индекса марки. Показатели растяжения и изгиба намного меньше, чем нагрузочная способность бетона. Для молодого бетона это отношение составляет около 1/20, для более старого – 1/8. Прочность на изгиб учитывают на проектных стадиях строительства.

Определяют ее следующим способом. Делают заливку из бетона в форме бруса с размерами, например, 120x15x15 см. После окончательного затвердевания его кладут на подпорки, расположенные на расстоянии 1 м, а в центр помещают нагрузку, которую постепенно увеличивают до момента разрушения образца. Размер испытуемой балки и расстояния между подпорками могут быть разными.

Показатель прочности на изгиб высчитывают формулой:

где L – расстояние подпорок (1 м в нашем случае); Р – вес нагрузки + вес образца, Н; b, h – ширина и высота сечения бруса (0,15 м). Эта прочность обозначается Btb и цифрой от 0,4 до 8.

Осевое растяжение

Осевое растяжение при проектировании несущих конструкций, как правило, не учитывается. Она необходима для определения способности материала не растрескиваться при перепадах температуры и колебаниях влажности. Растяжение определяется как некоторая составляющая от прочности на изгиб.

Этот показатель наиболее сложно определить. Одним из способов является растягивание образцов балок на специальном растягивающем оборудовании. Бетон разрушается от двух противоположных растягивающих сил. Стойкость к осевому растяжению является важной для бетона, используемого для резервуаров, дорожного покрытия, там, где трещины от такого типа нагрузки недопустимы.

Мелкозернистые составы имеют лучшую стойкость, чем крупнозернистые (при той же прочности сжатия). По этому показателю классы бетона обозначаются Bt в диапазоне от 0,4 до 6, цифры обозначают показатель МПа.

Передаточная прочность

Это значение являет собой нормируемый показатель прочности бетона напряженных элементов во время передачи на него натяжения армирующих деталей. Передаточная прочность предусматривается нормативными документами и техническими условиями для конкретного вида изделий.

В большинстве случаев она назначается не меньше 70% проектной марки и зависит от свойств арматуры. Рекомендуемая величина этого показателя не менее 15 или 20 Мпа для различных видов армирования. Вкратце это тот показатель, обозначающий уровень, когда армировочные пруты не проскальзывают при снятии с кондукторов.

Популярные виды бетона

Есть бетоны обычные или тяжелые (М25—М800) и легкие (М10—М200). Рассмотрим их подробнее.

От М5 до М35 применяются для ненесущих конструкций – они не особо прочные. М50 и М75 подходят для подготовительных работ перед заливкой бетона. М100-М150 – для малоэтажного строительства, конструктива, перемычек.

М200-М300 используются для большинства строительных задач. М200 отвечает классу В15, его прочность 196 кгс/м2 или 15 МПа. М250 (В20) имеет среднюю прочность 262 кгс/см2 или выдерживает давление 20 МПа, как и вышеуказанная марка набирает 70% прочности после 28 дней, а остальные 30% на протяжении полугода. Это легкие бетоны. Стяжки, полы, отмостки, фундаменты, лестницы, подпорки, бордюры – наиболее часто изготавливают именно из него. Замерзает при минусовых температурах и теряет до 5% своей стойкости при размораживании.

Легкие бетоны можно проверить, ударив по ним молотком или проведя острым предметом – на поверхности останутся достаточно отчетливые следы.

М350 (класс В25) – кубический метр этого бетона способен выдержать нагрузку в 25 МПа, он отвечает М250. М400 (класс В30) – выдерживает нагрузку 30 МПа. Эти марки и выше используются для многоэтажных зданий, несущих, монолитных конструкций, чаш бассейнов. Наиболее часто используется для дорожного покрытия, плит перекрытий, так как водонепроницаемый (класс W8), морозостойкий (F200).

Марки от М350 (классы от В25) и больше относятся к более прочным бетонам, они имеют высокую плотность и лучшие показатели стойкости к морозам и влажности, но намного тяжелее.

Соответствие марки бетона классу по прочности на сжатие

Застывший бетон имеет специфический состав, разнообразные компоненты которого относят его к конгломератным материалам. Данное свойство свидетельствует об особенности раствора, а именно его качестве. Надежность бетонной конструкции определяется его совместимостью с другими материалами. В зависимости от этого, существуют различные классы и марки бетонного раствора, применение которых характерно определенному виду строительства. Предлагаем детально ознакомиться с каждым классом и маркой бетона по его прочности на осевое растяжение и сжатие.

Суть и общая характеристика класса бетона

В узком понимании в классах бетонной смеси определяется нагрузка, которую может выдержать одна единица площади поверхности при отсутствии повреждений. Единицы измерения устанавливали на протяжении многих лет. На сегодняшний момент показатели класса определяются в МПа.

Способ определения крепости раствора одинаков как для его класса, так и для марки. При испытаниях используются в специальных лабораториях, путем экспериментов с образцами материалов. С помощью специальных приспособлений производится работа по установлению максимального усилия на образец, при котором начинается его разрушение. Исходя из полученных данных, усилие приравнивается к давлению.

Для достижения правильных результатов необходимо учитывать соотношение вектора нагрузки и оси образца. С этой целью нижние стороны поверхности пресса и бетона помечаются осями, которые должны совпадать. Согласно ГОСТам, выделяют 18 видовых классов бетонного раствора, зависимо от прочности на сжатие. Например, бетон В35. Данное обозначение означает его прочность при давлении 35 МПа.

Марка бетона – суть и общая характеристика

В случае если класс изделия, как показатель прочности не учитывается, используется стандарт надежности при помощи марки раствора. Суть данного определения состоит в отображении определенного свойства материала. Как и в предыдущем случае, это свойство определяется с помощью испытаний над образцами. Различают два общих значения определения марки:

  • минимальное: применяется для определения прочности, стойкости к влаге и низким температурам;
  • максимальное: используется для обозначения плотности.

Однако следует запомнить, что с помощью марки невозможно определить колебания крепости на всей бетонной поверхности.

Соответствие марки бетона классу

Определенный класс бетона по прочности на сжатие имеет свою соответствующую марку. На практике была составлена таблица этого соотношения. Например, согласно таблице, марке М50 соответствует класс В3,5.

Коэффициент перевода класса бетона в соответствующую марку – 13,1.

Чаще всего при строительстве для определения прочности применяется термин «класс». В отличии от марок в этом параметре вычислена гарантированная крепость материала.

Выбор бетона

Строительство определенной бетонной конструкции требует четко установленной крепости бетонного раствора. Среди них выделяют:

  • подбетонное покрытие — В7,5;
  • фундамент: в помещениях с низкой влажностью – от В15; в помещениях с высокой влажностью – от В22,5;
  • стены, а также другие конструкции на улице – учитывается морозостойкость: для районов со стабильно теплой температурой воздуха — F150; для районов с температурой воздуха ниже -40С — F200;
  • внутренние поверхности – от В15;
  • железобетонные конструкции – от В15 (предварительно напряженные) – от В20.

Все вышеперечисленные правила установлены строительными стандартами. Однако они могут отличаться в зависимости от технических расчетов. Так, одно здание может быть построено на бетоне разной прочности – материалы на нижних этажах должны быть значительно выше от материалов верхних этажей.

Одним из быстрых и удобных способов определения прочности бетона является испытание путем сжатия склерометром или молотком Шмидта. Принцип его работы заключается в ударе бойка по бетону и его отскоке. Вследствие этого специальный указатель перемещается на определенную высоту, которая соответствует установленной марке бетона.

Несмотря на простоту в использовании, данное приспособление не пользуется популярностью, поскольку не может дать точных значений. Это возникает от влияния на испытание других факторов, таких как характер поверхности образца, его толщина, структура и уплотнение.

Заключение

Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.

Следует запомнить, что прочность – это не стабильная величина. В процессе твердения бетон становится крепче. Все эти правила следует обязательно учитывать при строительстве.

Соответствие марки бетона классу по прочности на сжатие

Застывший бетон имеет специфический состав, разнообразные компоненты которого относят его к конгломератным материалам. Данное свойство свидетельствует об особенности раствора, а именно его качестве. Надежность бетонной конструкции определяется его совместимостью с другими материалами. В зависимости от этого, существуют различные классы и марки бетонного раствора, применение которых характерно определенному виду строительства. Предлагаем детально ознакомиться с каждым классом и маркой бетона по его прочности на осевое растяжение и сжатие.

Суть и общая характеристика класса бетона

В узком понимании в классах бетонной смеси определяется нагрузка, которую может выдержать одна единица площади поверхности при отсутствии повреждений. Единицы измерения устанавливали на протяжении многих лет. На сегодняшний момент показатели класса определяются в МПа.

Способ определения крепости раствора одинаков как для его класса, так и для марки. При испытаниях используются в специальных лабораториях, путем экспериментов с образцами материалов. С помощью специальных приспособлений производится работа по установлению максимального усилия на образец, при котором начинается его разрушение. Исходя из полученных данных, усилие приравнивается к давлению.

Для достижения правильных результатов необходимо учитывать соотношение вектора нагрузки и оси образца. С этой целью нижние стороны поверхности пресса и бетона помечаются осями, которые должны совпадать. Согласно ГОСТам, выделяют 18 видовых классов бетонного раствора, зависимо от прочности на сжатие. Например, бетон В35. Данное обозначение означает его прочность при давлении 35 МПа.

Марка бетона – суть и общая характеристика

В случае если класс изделия, как показатель прочности не учитывается, используется стандарт надежности при помощи марки раствора. Суть данного определения состоит в отображении определенного свойства материала. Как и в предыдущем случае, это свойство определяется с помощью испытаний над образцами. Различают два общих значения определения марки:

  • минимальное: применяется для определения прочности, стойкости к влаге и низким температурам;
  • максимальное: используется для обозначения плотности.

Однако следует запомнить, что с помощью марки невозможно определить колебания крепости на всей бетонной поверхности.

Соответствие марки бетона классу

Определенный класс бетона по прочности на сжатие имеет свою соответствующую марку. На практике была составлена таблица этого соотношения. Например, согласно таблице, марке М50 соответствует класс В3,5.

Коэффициент перевода класса бетона в соответствующую марку – 13,1.

Чаще всего при строительстве для определения прочности применяется термин «класс». В отличии от марок в этом параметре вычислена гарантированная крепость материала.

Выбор бетона

Строительство определенной бетонной конструкции требует четко установленной крепости бетонного раствора. Среди них выделяют:

  • подбетонное покрытие — В7,5;
  • фундамент: в помещениях с низкой влажностью – от В15; в помещениях с высокой влажностью – от В22,5;
  • стены, а также другие конструкции на улице – учитывается морозостойкость: для районов со стабильно теплой температурой воздуха — F150; для районов с температурой воздуха ниже -40С — F200;
  • внутренние поверхности – от В15;
  • железобетонные конструкции – от В15 (предварительно напряженные) – от В20.

Все вышеперечисленные правила установлены строительными стандартами. Однако они могут отличаться в зависимости от технических расчетов. Так, одно здание может быть построено на бетоне разной прочности – материалы на нижних этажах должны быть значительно выше от материалов верхних этажей.

Одним из быстрых и удобных способов определения прочности бетона является испытание путем сжатия склерометром или молотком Шмидта. Принцип его работы заключается в ударе бойка по бетону и его отскоке. Вследствие этого специальный указатель перемещается на определенную высоту, которая соответствует установленной марке бетона.

Несмотря на простоту в использовании, данное приспособление не пользуется популярностью, поскольку не может дать точных значений. Это возникает от влияния на испытание других факторов, таких как характер поверхности образца, его толщина, структура и уплотнение.

Заключение

Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.

Следует запомнить, что прочность – это не стабильная величина. В процессе твердения бетон становится крепче. Все эти правила следует обязательно учитывать при строительстве.

СНиП 2.06.08-87. Бетонные и железобетонные конструкции гидротехнических сооружений

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

Бетонные и железобетонные конструкции

Дата введения 1988-01-01

РАЗРАБОТАНЫ ВНИИГ им. Б. Е. Веденеева Минэнерго СССР (канд. техн. наук А. П. Пак – руководитель работ; А. В. Караваев; кандидаты техн. наук А. Д. Кауфман, М. С. Ламкин. А. Н. Марчук, Л. П. Трапезников, В. Б. Судаков; доктора техн. наук Л. А. Гордон, И. Б. Соколов) совместно с Гидропроектом им. С. Я. Жука Минэнерго СССР (А. Г. Осколков, Т. И. Сергеева; д-р техн. наук С. А. Фрид; С. А. Березинский) ; ГрузНИИЭГС Минэнерго СССР (д-р техн. наук Г. П. Вербицкий); Гипроречтрансом Минречфлота РСФСР (канд. техн. наук В. Э. Даревский); Ленморниипроектом Минморфлота СССР (канд. техн. наук А. А. Долинский): ВО Союзводпроект Минводхоза СССР (канд. техн. наук С. 3. Рагольский).

ВНЕСЕНЫ Минэнерго СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Управлением стандартизации и технических норм в строительстве Госстроя СССР (Д. В. Петухов).

УТВЕРЖДЕНЫ постановлением Государственного строительного комитета СССР от 26 февраля 1987г. № 37.

С введением в действие СНиП 2.06.08-87 “Бетонные и железобетонные конструкции гидротехнических сооружений” с 1 января 1988 г. утрачивают силу СНиП II-56-77 “Бетонные и железобетонные конструкции гидротехнических сооружений”.

В СНиП 2.06.08-87 “Бетонные и железобетонные конструкции гидротехнических сооружений” внесены исправления опечаток, опубликованных в БСТ № 1 1989 года.

Исправления внесены юридическоим бюро “Кодекс”.

Настоящие нормы распространяются на проектирование вновь строящихся и реконструируемых бетонных и железобетонных конструкций гидротехнических сооружений, находящихся постоянно или периодически под воздействием водной среды.

Элементы бетонных и железобетонных конструкций гидротехнических сооружений, не подвергающиеся воздействию водной среды, следует проектировать в соответствии с требованиями СНиП 2.03.01-84; бетонные и железобетонные конструкции мостов, транспортных туннелей и труб, расположенные под насыпями автомобильных и железных дорог, следует проектировать по СНиП 2.05.03-84.

В проектах сооружений, предназначенных для строительства в сейсмических районах, в Северной строительно-климатической зоне, в районах распространения просадочных, набухающих и слабых по физико-механическим свойствам грунтов, должны соблюдаться дополнительные требования, предъявляемые к таким сооружениям соответствующими нормативными документами, утвержденными или согласованными Госстроем СССР.

Основные буквенные обозначения и их индексы, принятые в настоящих нормах согласно СТ СЭВ 1565-79, приведены в справочном приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. При проектировании бетонных и железобетонных конструкций гидротехнических сооружений необходимо соблюдать требования СНиП 2.06.01-86 и строительных норм и правил по пpoeктиpoвaнию отдельных видов гидротехнических сооружений.

1.2. Выбор типа бетонных и железобетонных конструкций (монолитных, сборно-монолитных, сборных, в том числе предварительно напряженных и заанкеренных в основание) должен производиться исходя из условий технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, энергоемкости, трудоемкости и стоимости строительства.

При выборе элементов сборных конструкций следует рассматривать предварительно напряженные конструкции из высокопрочных бетонов и арматуры, а также конструкции из легких бетонов.

Типы конструкций, основные размеры их элементов, а также степень насыщения железобетонных конструкций арматурой необходимо принимать на основании сравнения технико-экономических показателей вариантов.

1.3. Элементы сборных конструкций должны отвечать условиям механизированного изготовления на специализированных предприятиях.

Следует рассматривать целесообразность укрупнения сборных конструкций с учетом условий их изготовления, транспортирования, грузоподъемности монтажных механизмов.

1.4. Для монолитных конструкций следует предусматривать унифицированные размеры, позволяющие применять инвентарную опалубку.

1.5. Конструкции узлов и соединений элементов в сборных конструкциях должны обеспечивать надежную передачу усилий, прочность самих элементов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.

1.6. При проектировании конструкций гидротехнических сооружений, недостаточно апробированных практикой проектирования и строительства, для сложных условий статической и динамической работы конструкций (когда характер напряженного и деформированного состояния с необходимой достоверностью не может быть определен расчетом) следует проводить исследования.

1.7. Для обеспечения требуемой водонепроницаемости и морозостойкости конструкций, а также для уменьшения противодавления воды в их расчетных сечениях необходимо предусматривать следующие мероприятия:

укладку бетона соответствующих марок по водонепроницаемости и морозостойкости со стороны напорной грани и наружных поверхностей (особенно в зонах переменного уровня воды) ;

применение поверхностно-активных добавок к бетону (воздухововлекающих, пластифицирующих и др.);

гидроизоляцию и теплогидроизоляцию наружных поверхностей сооружений;

обжатие бетона со стороны напорных граней и со стороны поверхностей сооружения, испытывающих растяжение от эксплуатационных нагрузок;

устройство дренажа со стороны напорной грани.

Выбор мероприятия следует производить на основе технико-экономического сравнения вариантов.

2. МАТЕРИАЛЫ ДЛЯ БЕТОННЫХ И

2.1. Бетон для бетонных и железобетонных конструкций гидротехнических сооружений должен удовлетворять требованиям ГОСТ 26633-85 и настоящего раздела.

2.2. При проектировании бетонных и железобетонных конструкций гидротехнических сооружений в зависимости от вида и условий работы необходимо устанавливать показатели качества бетона, основными из которых являются следующие:

а) классы бетона по прочности на сжатие, которые отвечают значению гарантированной прочности бетона, МПа, с обеспеченностью q = 0,95. В массивных сооружениях допускается применение бетонов со значениями гарантированной прочности с обеспеченностью q = 0,9.

В проектах необходимо предусматривать следующие классы бетона по прочности на сжатие: В5, В7,5, В10, В12,5, В15, В20, В25, В30, В35;

б) классы бетона по прочности на осевое растяжение. Эту характеристику устанавливают в тех случаях, когда она имеет главенствующее значение и контролируется на производстве.

В проектах необходимо предусматривать следующие классы бетона по прочности на осевое растяжение:

в) марки бетона по морозостойкости.

В проектах необходимо предусматривать следующие марки бетона по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500, F600.

Марку бетона по морозостойкости следует назначать в зависимости от климатических условий и числа расчетных циклов попеременного замораживания и оттаивания в течение года (по данным долгосрочных наблюдений), с учетом эксплуатационных условий. Для энергетических сооружений марку бетона по морозостойкости следует принимать по табл. 1.

Марка бетона по морозостойкости при числе циклов попеременного замораживания и оттаивания в год

Св. 150 до 200 включ.

Примечания: 1. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца: умеренные- выше минус 10°С суровые – от минус 10 до минус 20°С включ., особо суровые – ниже минус 20°С.

2. Среднемесячные температуры наиболее холодного месяца для района строительства определяются по СНиП 2.01.01-82, а также по данным гидрометеорологической службы.

3. При числе расчетных циклов более 200 следует применять специальные виды бетонов или конструктивную теплозащиту;

г) марки бетона по водонепроницаемости.

В проектах необходимо предусматривать следующие марки бетона по водонепроницаемости: W2, W4, W6, W8, W10, W12, W16, W18, W20.

Марку бетона по водонепроницаемости назначают в зависимости от градиента напора, определяемого как отношение максимального напора в метрах к толщине конструкции (или расстоянию от напорной грани до дренажа) в метрах, и температуры контактирующей с сооружением воды, , по табл. 2, или в зависимости от агрессивности среды в соответствии со СНиП 2.03.11-85.

В нетрещиностойких напорных железобетонных конструкциях и в нетрещиностойких безнапорных конструкциях морских сооружений проектная марка бетона по водонепроницаемости должна быть не ниже W4.

Марка бетона по водонепроницаемости при градиентах напора

св. 20 до 30 включ.

Св. 10 до 30 включ.

Примечание. Для конструкций с градиентом напора свыше 30 следует назначать марку бетона по водонепроницаемости W16 и выше.

2.3. При надлежащем обосновании допускается устанавливать промежуточные значения классов бетона по прочности на сжатие, отличающиеся от перечисленных в п. 2.2, а также классы В40 и выше. Характеристики этих бетонов следует принимать по СНиП 2.03.01-84 и по интерполяции.

2.4. К бетону конструкций гидротехнических сооружений следует предъявлять дополнительные, устанавливаемые в проектах и подтверждаемые экспериментальными исследованиями, требования: по предельной растяжимости, отсутствию вредного взаимодействия щелочей цемента с заполнителями, сопротивляемости истиранию потоком воды с донными и взвешенными наносами, стойкости против кавитации и химического воздействия, тепловыделению при твердении бетона.

2.5. Срок твердения (возраст) бетона, отвечающий его классам по прочности на сжатие, на осевое растяжение и марке по водонепроницаемости, принимается, как правило, для конструкций речных гидротехнических сооружений 180 сут, для сборных и монолитных конструкций морских и речных портовых сооружений 28 сут. Срок твердения (возраст) бетона, отвечающий его проектной марке по морозостойкости, принимается 28 сут, для массивных конструкций, возводимых в теплой опалубке, 60 сут.

Если известны сроки фактического нагружения конструкций, способы их возведения, условия твердения бетона, вид и качество применяемого цемента, то допускается устанавливать класс бетона в ином возрасте.

Для сборных, в том числе предварительно напряженных конструкций, отпускную прочность бетона на сжатие следует принимать в соответствии с ГОСТ 13015.0-83, но не менее 70% прочности принятого класса бетона.

2.6. Для железобетонных элементов из тяжелого бетона, рассчитываемых на воздействие многократно повторяющейся нагрузки, и железобетонных сжатых стержневых конструкций (набережные типа эстакад на сваях, сваях-оболочках и т. п.) следует применять бетон класса по прочности на сжатие не ниже В15.

2.7. Для предварительно напряженных элементов следует принимать бетон класса по прочности на сжатие: не менее В15 – для конструкций со стержневой арматурой; не менее В30 – для элементов, погружаемых в грунт забивкой или вибрированием.

2.8. Для замоноличивания стыков элементов сборных конструкций, которые в процессе эксплуатации могут подвергаться воздействию отрицательных температур наружного воздуха или воздействию агрессивной воды, следует применять бетоны проектных марок по морозостойкости и водонепроницаемости не ниже принятых для стыкуемых элементов.

2.9. Следует предусматривать широкое применение добавок поверхностно-активных веществ (СДБ, СНВ, ЛХД и др.), а также применение в качестве активной минеральной добавки золы-уноса тепловых электростанций, отвечающей требованиям соответствующих нормативных документов.

2.10. Если по технико-экономическим расчетам для повышения водонепроницаемости бетонных и железобетонных конструкций гидротехнических сооружений целесообразно использовать бетоны на напрягающем цементе, а для снижения нагрузки от собственного веса конструкции – легкие бетоны, то классы и марки таких бетонов следует принимать по СНиП 2.03.01-84.

2.11. Нормативные и расчетные сопротивления бетона в зависимости от классов бетона по прочности на сжатие и на осевое растяжение следует принимать по табл. 3.

В случае принятия промежуточных классов бетона нормативные и расчетные сопротивления следует принимать по интерполяции.

2.12. Коэффициенты условий работы бетона следует принимать по табл. 4.

2.13. При расчете железобетонных конструкций на выносливость расчетные сопротивления бетона и надлежит умножать на коэффициент условий работы , принимаемый по табл. 5.

2.14. Расчетное сопротивление бетона при всестороннем сжатии , МПа, следует определять по формуле

Понравилась статья? Поделиться с друзьями:
Строительство и ремонт
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять
Отказаться