конструкции тяжелого бетона

Бетон при минусовой температуре

конструкции тяжелого бетона

ООО «Основа»

Тяжелый бетон. Применение тяжелого бетона

Тяжелый бетон является основным видом бетона для железобетонных конструкций. Проектные марки тяжелого бетона по прочности на сжатие: М50, М75, М100, М150, М200, М250, М300, М350, М400, М450, М500, М600, М700, М800. Марки бетона М250, М350 и М450 предусматривают при условии, что это приводит к экономии цемента. Высокие марки бетона (М500-М800) нужны для предварительно напряженных железобетонных конструкций.

При этом надо учесть, что бетон на плотном заполнителе имеет меньшую усадку и ползучесть по сравнению с легким бетоном на пористом заполнителе и ячеистым бетоном. Поэтому и потери предварительного напряжения арматуры при тяжелом бетоне меньше. Кроме того, он хорошо защищает стальную арматуру от коррозии, что особенно важно для предварительно напряженных конструкций, работающих в агрессивных условиях.

Высокопрочный бетон

Высокопрочный бетон М600-М1000 получают на основе высокопрочного портландцемента, промытого песка и щебня не ниже М1200-М1400.

Малоподвижные и жесткие смеси приготовляют с низкими В/Ц = 0,27-0,45 в бетоносмесителях принудительного действия (например, турбинных). Для плотной укладки этих смесей при формовании изделий и конструкций используют интенсивное уплотнение: вибрирование с пригрузом, двойное вибрирование, сильное прессование. Значительно облегчают уплотнение суперпластификаторы, не понижающие прочности бетона.

Высокопрочные бетоны являются, как правило, и быстротвердеющими. Однако для ускоренного достижения отпускной прочности бетона в изделиях обычно требуется тепловая обработка, которая может проводиться по сокращенному режиму. Новые особо быстротвердеющие цементы дают возможность обойтись без тепловой обработки, так как бетон достигает нужной прочности в «естественных» условиях твердения при температуре 20-25°С.

Проектные марки тяжелого бетона по прочности на осевое растяжение: 10, 15, 20, 25, 30, 35, 40. Высокое сопротивление растяжению требуется от дорожного, аэродромного, гидротехнического и других специальных бетонов.

Тяжелый бетон хорошо сопротивляется поверхностному износу, что важно для цементно-бетонных дорог и полов промышленных зданий. Хорошие защитные свойства против радиоактивных излучений предопределяют его широкое применение в конструкциях биологической защиты атомных реакторов.

Проектные марки тяжелого бетона по морозостойкости: 50, 75, 100, 150, 200, 300, 400 и 500.

Бетоны высокой морозостойкости

Бетоны высокой морозостойкости применяют для тех частей сооружений, которые подвергаются многократному замораживанию и оттаиванию во влажном состоянии. Эта зона переменного уровня гидротехнических сооружений, конструкции железобетонных градирен, цементно-бетонные покрытия дорог и аэродромов и т.п.

Морозостойкость зависит от качества исходных материалов, состава бетона и тщательности производства работ, которые и определяют структуру бетона.

Рекомендуется применять сульфатостойкий портландцемент, являющийся одновременно и морозостойким.

Для повышения морозостойкости и водонепроницаемости бетона применяют добавки поверхностно-активных веществ.

Мелкозернистый бетон

Мелкозернистый (цементный) бетон применяют при изготовлении тонкостенных, в том числе армоцементных конструкций. Его целесообразно использовать и для обычных железобетонных конструкций, когда на месте нет крупного заполнителя, а возить заполнитель далеко и дорого. Мелкозернистый бетон отличается от обычного большим содержанием цементного камня, поэтому его усадка и ползучесть несколько выше.

Главные недостатки тяжелого бетона — большая плотность и высокая теплопроводность.

Интересные и нужные сведения о строительных материалах и технологиях

Материалы для тяжелого бетона

Тяжелый бетон, применяемый для изготовления фундаментов, колонн, балок, пролетных строений мостов и других несущих элементов и конструкций промышленных и жилых зданий и инженерных сооружений, должен приобретать определенную прочность в заданный срок твердения, а бетонная смесь должна быть удобной в укладке и экономичной. При использовании в не защищенных от внешней среды конструкциях бетон должен иметь повышенные плотность, морозостойкость и коррозиестойкость. В зависимости от назначения и условий эксплуатации бетона в сооружении предъявляются соответствующие требования к составляющим его материалам, которые предопределяют его состав и свойства, оказывают влияние на технологию производства изделий, их долговечность и экономичность.

Для приготовления тяжелых бетонов применяют портландцемент, пластифицированный портландцемент, портландцемент с гидравлическими добавками, шлакопортландцемент, быстротвердеющий портландцемент (БТЦ) и др. Цемент выбирают с учетом требований, предъявляемых к бетону (прочности, морозостойкости, химической стойкости, водонепроницаемости и др.), а также технологии изготовления изделий, их назначения и условий эксплуатации.

Марку цемента выбирают в зависимости от проектируемой прочности бетона при сжатии.

Для приготовления бетонной смеси применяется питьевая, а также любая вода, не содержащая вредных примесей (кислот, сульфатов, жиров, растительных масел, сахара), препятствующих нормальному твердению бетона. Нельзя применять воды болотные и сточные, а также воды, загрязненные вредными примесями, имеющие водородный показатель рН менее 4 и содержащие сульфаты в расчете на ионы S04 более 2700 мг/л и всех других солей более 5000 мг/л. Морскую и другую воду, содержащую минеральные соли, можно применять, если общее количество солей в ней не превышает 2%. Пригодность воды для бетона устанавливают химическим анализом и сравнительными испытаниями прочности бетонных образцов, изготовленных на данной воде и на чистой питьевой воде и испытанных в возрасте 28 сут при хранении в нормальных условиях. Воду считают пригодной, если приготовленные на ней образцы имеют прочность не меньше, чем у образцов на чистой питьевой воде. « К добавкам для бетонов относятся неорганические и органические вещества или их смеси, за счет введения которых в контролируемых количествах направленно регулируются свойства бетонных смесей и бетонов либо бетонам придаются специальные свойства. В основу классификации добавок для бетонов положен эффект их действия. По этому признаку добавки для бетонов делят на следующие группы:

1. Регулирующие реологические свойства бетонных смесей. К ним относятся пластифицирующие, увеличивающие подвижность бетонных смесей; стабилизирующие, предупреждающие расслоение, и водоудерживающие, уменьшающие водоотделение.

2. Регулирующие схватывание бетонных смесей и твердение бетонов. К ним относятся добавки, замедляющие схватывание, ускоряющие схватывание и твердение, и противоморозные, т. е. обеспечивающие твердение бетона при отрицательных температурах.

3. Добавки, регулирующие пористость бетонной смеси и бетона. К ним относятся воздухововлекающие, газообразующие и пенообразующие добавки, а также уплотняющие (воздухоудаляющие или кольматирующие поры бетона).

4. Добавки, придающие бетону специальные свойства: гидрофобизующие, уменьшающие смачивание, повышающие противорадиационную защиту, жаростойкость; антикоррозионные, т. е. увеличивающие стойкость в агрессивных средах; ингибиторы коррозии стали, улучшающие защитные свойства бетона к стали; добавки, повышающие бактерицидные и инсектицидные свойства.

5. Добавки полифункционального действия, одновременно регулирующие различные свойства бетонных смесей и бетонов: пластифицирующе-воздухововлекающие; пластифицирующие, повышающие прочность бетона, и газообразующе-пластифицирующие.

6. Минеральные порошки — заменители цемента. К этой группе относятся тонкомолотые материалы, вводимые в бетон в количестве 5. 20%. Это золы, молотые шлаки, отходы камнедробления и др., придающие бетону специальные свойства (жаростойкость, электропроводимость, цвет и др.).

В качестве пластифицирующих добавок наибольшее распространение получили поверхностно-активные вещества (ПАВ).

Поверхностно-активные добавки представляют собой особую группу органических веществ, введение которых в бетонные (растворные) смеси позволяет существенно улучшить их удобоукладываемость. Вместе с тем поверхностно-активные добавки позволяют уменьшить водоцементное отношение и соответственно сократить расход цемента без снижения прочности материалов и изделий. Использование поверхностно-активных добавок в малых дозах (0,05. 0,2% от массы цемента) позволяет на 8. 12% уменьшать удельный расход цемента в бетонах и растворах. Вместе с тем поверхностно-активные добавки повышают водонепроницаемость, морозостойкость, коррозиеустойчивость и вообще долговечность материалов в конструкциях. Этим самым применение поверхностно-активных добавок способствует повышению эффективности капиталовложений в строительство. По указанным причинам поверхностно-активные добавки в цементно-бетонной технологии приобретают все большее значение как у нас, так и за рубежом.

Действие поверхностно-активных добавок на цементные системы основано на следующих положениях физической химии. Поверхностно-активные вещества способны повышать поверхностное натяжение у поверхности раздела фаз, например на границах раздела фаз вода — твердое тело, вода — воздух. Мельчайшие частицы поверхностно-активных веществ адсорбируются, т. е. прочно связываются с внутренней поверхностью раздела тел, образуя на этих поверхностях молекулярные слои толщиной в одну молекулу. Величина этого адсорбционного слоя относится к диаметру цементной частицы так же, как толщина спички к высоте 30-этажного здания. Однако применение в малых дозах добавок поверхностно-активных веществ к цементным системам существенно меняет свойства их.

Поверхностно-активные добавки, используемые в цементах, растворах и бетонах, по определяющему эффекту действия на цементные системы можно условно разделить на три группы: гидрофилизующие, гидрофобизующие и воздухововлекающие.

Гидрофилизующие добавки при затворении вяжущего водой предотвращают на определенный срок слипание отдельных цементных частиц между собой. В этом случае несколько замедляется коагуляция новообразований, а вместе с тем высвобождается некоторое количество воды, которое обычно как бы застревает в коагуляционных структурах. По этой причине требуемая удобоукладываемость смеси с добавкой достигается при меньшем количестве воды затворения, чем у смеси без добавки. Наибольшее распространение получили гидрофилирующие добавки на основе лигносульфатов — сульфитно-дрожжевой бражки (СДБ).

Эта добавка несколько замедляет твердение бетона в раннем возрасте и поэтому на заводах ЖБИ ее применяют в сочетании с добавками — ускорителями твердения.

Суперпластификаторы — новые эффективные разжижители бетонной смеси — в большинстве случаев представляют синтетические полимеры — производные меламиновой смолы или нафталинсульфокислоты. Применяют суперпластификатор С-3 (НИИЖБ) — на основе нафталинсульфокислоты, суперпластификатор 10-03 (ВНИИЖелезобетон) — продукт конденсации сульфированного меламина с формальдегидом и др. При введении в бетонную смесь суперпластификатора резко увеличивается ее подвижность и текучесть. Воздействуя на бетонную смесь, как правило, в течение 2. 3 ч с момента введения, суперпластификаторы под действием щелочной среды подвергаются частички деструкции и переходят в другие вещества, безвредные для бетона и не тормозящие процесса твердения. Суперпластифика — торы, вводимые в бетонную смесь в количестве 0,15. 1,2% от массы цемента, разжижают бетонную смесь в большей мере, чем обычные пластификаторы. Пластифицирующий эффект сохраняется, как правило, 1. 2 ч после введения добавки, а через 2. 3 ч он уже невелик. Суперпластификаторы используются в бетонах как единолично, так и в комплексе с другими добавками, например с сульфитно-дрожжевой бражкой (СДБ) и нитрит-нитрат-хлоридом кальция (ННХК). Суперпластификаторы позволяют существенно снизить В/Ц, повысить подвижность смеси, изготовить изделия высокой прочности, насыщенных арматурой из изопластичных смесей.

Гидрофобизующие добавки, как правило, существенно повышают нерасслаиваемость, связанность бетонной (растворной) смеси, находящейся в покое. При действии внешних механических факторов (при перемешивании, укладке и т. д.) бетонная или растворная смесь с добавкой отличается повышенной пластичностью. Такое свойство гидрофобизующих смесей объясняется специфическим смазочным действием тончайших слоев поверхностно-активных веществ, распределяемых в смеси. Кроме того, эти добавки предохраняют цементы от быстрой потери активности при перевозке или хранении. В качестве гидрофобизующих добавок раньше применялись в основном природные продукты — некоторые животные жиры, алеиновая и стеариновая кислоты. Развитие химической промышленности дало возможность широко использовать новые гидрофобизующие добавки— битумные дисперсии (эмульсии и эмульсосуспензии), нафтеновые кислоты и их соли, окисленные, синтетические жирные кислоты и их кубовые остатки, кремнийорганические полимеры и др.

Воздухововлекающие добавки позволяют получать бетонные (растворные) смеси с некоторым дополнительным количеством воздуха. Чтобы повысить пластичность смеси, обычно увеличивают объем вяжущего теста. Вовлекая воздух, увеличивается объем вяжущего теста без введения лишнего цемента. Поэтому удобоукладываемость такой системы повышается. К тому же воздухововлекающие добавки образуют и ориентированные слои, активные в смазочном отношении. Широко применяют воздухововлекающие добавки на основе смоляных кислот: смолу нейтрализованную воздухововлекающую (СНВ), омыленный древесный пек и др.

К ускорителям твердения цемента, увеличивающим нарастание прочности бетона, особенно в ранние сроки, относятся хлорид кальция, сульфат натрия, нитрит-нитрат-хлорид кальция и др.

Влияние хлористого кальция на повышение прочности бетона объясняется его каталитическим воздействием на гидратацию C3S и C2S, а также реакцией с СзА и C4AF. Ускорители твердения не рекомендуется применять в железобетонных конструкциях и предварительно напряженных изделиях с диаметром арматуры менее 5 мм и для изделий автоклавного твердения, эксплуатирующихся в среде с влажностью более 60%. Сульфат натрия может вызвать появление высолов на изделиях.

В нитрит-нитрат-хлориде кальция ускоряющее действие хлорида сочетается с ингибирующим действием нитрата кальция.

Противоморозные добавки — поташ, хлорид натрия, хлорид кальция и др. — понижают точку замерзания воды, чем способствуют твердению бетона при отрицательных температурах.

Для замедления схватывания применяют сахарную патоку и добавки СДБ, ГКЖ-Ю и ГКЖ-94.

Пено- и газообразователи применяют для изготовления ячеистых бетонов. К пенообразователям относятся клееканифольные, смолосапониновые, алюмосульфонафтеновые добавки, а также пенообразователь ГК. В качестве газообразователей применяют алюминиевую пудру ПАК-3 и ПАК-4.

Комбинированные добавки, например пластификатор СДБ, ускоритель твердения (хлористый кальций) с ингибитором (нитратом натрия), способствуют экономии цемента. При этом ускоритель твердения нейтрализует некоторое замедление твердения смеси в раннем возрасте.

Специальные добавки обеспечивают получение водонепроницаемых растворов или бетонов, регулируют сроки схватывания и др.

Песок — рыхлая смесь зерен крупностью 0,16. 5 мм, образовавшаяся в результате естественного разрушения массивных горных пород (природные пески). Природные пески по минералогическому составу подразделяются на кварцевые, полевошпатовые, известняковые, доломитовые. Из природных песков наибольшее применение для тяжелого бетона получили кварцевые пески.

В качестве мелкого заполнителя применяют пески повышенной крупности, крупные, средние и мелкие — природные и обогащенные; пески из отсевов дробления и обогащенные из отсевов дробления.

На качество бетона большое влияние оказывают зерновой состав песка и содержание в нем различных примесей: пылевидных, илистых, глинистых частиц, петрографический состав, в том числе содержание вредных примесей, включая органические. Содержание этих примесей устанавливают отмучиванием. Количество их не должно превышать 3% в природном песке и-из отсевов. Наиболее вредной в песке является примесь глины, которая обволакивает отдельные зерна песка и препятствует сцеплению их с цементным камнем, понижая прочность бетона. Глинистые и пылевидные примеси в песке повышают водопотребность бетонных смесей и приводят к понижению прочности и морозостойкости бетона. Очищать песок от глинистых и пылевидных частиц можно промывая его водой в пескомойках. В природных песках могут содержаться также в большом количестве органические примеси (гуминовые кислоты, остатки растений, перегной), которые вступают в реакцию с твердеющим цементом и понижают прочность бетона. Содержание органических примесей устанавливают колориметрическим методом — обработкой пробы песка 3%-ным раствором едкого натра. Если после обработки песка цвет раствора не оказывается темнее эталона (цвета крепкого чая), то песок признается доброкачественным.

Испытуемый песок можно считать пригодным, если прочность образцов раствора из него оказывается не меньше прочности образцов с тем же песком, но промытым сначала известковым молоком, а затем водой.

Зерновой состав песка имеет особое значение для получения качественного бетона. Песок для бетона должен состоять из зерен различной величины (0.16. 5 мм), чтобы объем пустот в нем был минимальным; чем меньше объем пустот в песке, тем меньше требуется цемента для получения плотного бетона. Зерновой состав песка определяют просеиванием сухого песка через стандартный набор сит с размерами отверстий (сверху вниз) 10; 5; 2,5; 0,63; 0,315; 0,16 мм. Высушенную до постоянной массы пробу песка просеивают сквозь сита с круглыми отверстиями диаметром 10 и 5 мм. Остатки на этих ситах взвешивают и вычисляют с точностью до 0,1%.

Выбор мелких заполнителей для бетона производят по зерновому составу и модулю крупности, содержанию пылевидных и глинистых частиц, петрографическому составу, в том числе содержанию вредных примесей, включая органические примеси и потенциально реакционноспособные породы и минералы, а при применении дробленых песков — по пределу прочности исходной породы при сжатии в насыщенном водой состоянии.

Песок, отсеянный на ситах двух близких номеров, имеет большую пустотность (40. 42%). При наилучшем сочетании в песке крупных, средних и мелких зерен пустотность уменьшается до 30%. Хорошим по крупности зерен считается песок, у которого пустотность не превышает 38%.

Пески с модулем крупности 1,5. 2 допускается применять в бетонах класса В15, а также для бетонов подводной зоны конструкций мостов. Использование этих песков в бетонах класса В15 и выше допускается при соответствующем технико-экономическом обосновании. Пески с модулем крупности 2,5 и более рекомендуется применять для бетонов класса В25 и выше.

Для обеспечения качественного зернового состава песка и его постоянства в составе бетонной смеси применяют фракционированный песок, составленный из двух фракций: крупной и мелкой, раздельно дозируемых при приготовлении бетонной смеси Разделение исходного песка на две фракции производят по граничному зерну, соответствующему размеру отверстий контрольных сит 1,25 или 0,63 мм. Допускается применять готовые смеси фракций в требуемом соотношении, а также смеси песков природных или из отсевов дробления.

При несоответствии зернового состава природных песков требованиям ГОСТа следует применять в качестве укрупняющей добавки к мелким пескам крупные фракции природного или дробленого песка, а также крупный песок из отсевов дробления, а для понижения модуля крупности — мелкие пески.

Использование в качестве мелких заполнителей песков из отсевов дробления и их смесей с природными песками допускается при условии обеспечения заданной удобоукладываемости бетонной смеси без перерасхода цемента. В природном песке, предназначенном для бетонов, допускаются зерна гравия или щебня размером более 10 мм — до 0,5% по массе; размером 5. 10 мм — до 10% по массе.

Насыпная плотность кварцевого песка зависит от степени уплотнения, влажности и пустотности. Сухой и рыхло 5 насыпанный кварцевый песок имеет насыпную плотность 1500. 1600 кг/м 3 . Наименьшая насыпная плотность кварцевых песков соответствует влажности 5. 7%. При дозировке песка для изготовления бетона или приемке песка необходимо учитывать содержание в нем воды.

В качестве крупного заполнителя для тяжелого бетона применяют гравий и щебень из горных пород или щебень из гравия размером зерен 5. 70 мм. Гравий — зерна окатанной формы и гладкой поверхности размером 5. 70 мм, образовавшиеся в результате естественного разрушения горных пород. Качество гравия характеризуется: зерновым составом и формой зерна, прочностью, содержанием зерен слабых пород, наличием пылевидных и глинистых примесей, петрографической характеристикой, плотностью, пористостью, пустотностью и водопоглощением. Для бетона наиболее пригодна малоокатанная (щебневидная) форма зерен, хуже яйцевидная (окатанная), еще хуже пластинчатая и игловатая, понижающие прочность бетона.

Часто гравий залегает вместе с песком. При содержании в гравии песка 25. 40% материал называют песчано-гравийной смесью. Гравий, подобно песку, может содержать вредные примеси пыли, ила, глины, органических кислот. Количество в гравии глинистых, илистых и пылевидных примесей, определяемых отмучиванием, не должно превышать 1% по массе.

Оценку прочности гравия производят испытанием на дробимость в цилиндре. Последняя определяется путем раздавливания пробы гравия в цилиндре статической нагрузкой. После этого пробу просеивают через сито с размером отверстия, соответствующим наименьшему размеру зерна в исходной пробе гравия, и устанавливают величину потери в массе. В зависимости от этой величины гравий делят на марки: Др8 (при потере в массе до 8%), Др12 (свыше 8 до 12%), Др16 (свыше 12 до 16%) и Др24 (свыше 16 до 24%). Для конструкции промышленных и гражданских зданий прочность зерен гравия должна быть более чем в 1,5. 2 раза выше прочности бетона. Гравий для бетона должен характеризоваться также петрографическим составом с указанием количества в нем зерен слабых пород, а также механической прочностью на износ. Износ гравия определяют в полочном барабане. При этом необходимо знать сопротивляемость каменного материала скалыванию кромок, удару и истиранию при падении и изнашивании, при трении зерен гравия друг о друга или при ударе падающих с полки шаров. Показателем износа считают потерю (%) гравия в массе от первоначальной массы. По износу гравий делят на четыре марки: И-I, И-П, И-Ш и И-IV.

Гравий, предназначенный для бетонных конструкций, подвергающихся действию воды и низких температур, должен обладать определенной степенью морозостойкости. По степени морозостойкости гравий делят на марки F 15, 25, 50, 100, 150, 200 и 300. Морозостойкость гравия определяют непосредственным замораживанием или испытанием в растворе сернокислого натрия. Гравий считают морозостойким, если в насыщенном водой состоянии он выдерживает без разрушения многократные (15 циклов и более) попеременные замораживание при температуре —17°С и оттаивание. При этом потеря в массе после испытания составляет не более 5%. Для марок F 15 и 25 допускается потеря массы.

Морозостойкость гравия можно определить не только непосредственным замораживанием и оттаиванием, но и ускорением испытанием раствора сернокислого натрия. Сущность этого метода заключается в том, что в место замораживания образцы погружают в насыщенный раствор сернокислого натрия и затем высушивают при температуре 105. 110 °С. Кристаллы сульфата натрия, образующиеся при этом в порах материала, давят на стенки пор сильнее, чем частицы льда. При испытании сернокислым натрием число циклов меньше, чем при замораживании: один цикл в растворе сернокислого натрия приравнивают к 5. 10 циклам испытания замораживанием в зависимости от степени морозостойкости гравия. В случае получения неудовлетворительных результатов при испытании сернокислым натрием производят испытание непосредственным замораживанием, результаты этого испытания являются окончательными.

Наиболее экономично для приготовления бетона применять крупный гравий, так как благодаря меньшей его суммарной поверхности требуется меньше цемента для получения прочного бетона. Допустимая крупность зерен гравия зависит от размеров бетонируемой конструкции. Для хорошей укладки бетонной смеси гравий должен применяться не крупнее минимального размера сечения конструкции и не больше 3/4 наименьшего расстояния между стержнями арматуры.

Для бетонирования массивных гидротехнических сооружений применяют гравий крупностью зерен более 70 мм.

Хорошим зерновым составом гравия считается тот, в котором имеются зерна разной величины, что создает наименьшую пустотность. Зерновой состав гравия определяется просеиванием 10 кг сухой пробы через стандартный набор сит с размерами отверстий 70, 40, 20, 10 и 5 мм. За наибольшую крупность зерен гравия принимают размер отверстий сита, на котором полный остаток не превышает 10% навески, и за наименьшую крупность гравия — размеры отверстия одного из верхних сит, через которое проходит не более 5% просеиваемой пробы. Ниже приведены значения полных остатков на контрольных ситах при рассеве гравия (шебня) фракций от 5 (3) до 10 мм, свыше 10 до 20; свыше 20 до 40 и свыше 40 до 70 мм.

Щебень получают путем дробления массивных горных пород, гравия, валунов или искусственных камней на куски размером 5. 120 мм. Для приготовления бетона обычно используют щебень, полученный дроблением плотных горных пород, гравия, доменных и мартеновских шлаков. Дробление производят в камнедробилках. При этом получают не только зерна щебня, но и мелкие фракции, относящиеся по крупности к песку и пыли. Зерна щебня имеют неправильную форму. Лучшей считается форма, приближающаяся к кубу и тетраэдру. Вследствие шероховатой поверхности зерна щебня лучше сцепляются с цементным камнем в бетоне, чем гравий, но бетонная смесь со щебнем менее подвижна.

По дробимости, морозостойкости, зерновому составу, износу к щебню предъявляют такие же требования, как и гравию.

Прочность щебня характеризуется маркой, соответствующей пределу прочности горной породы при сжатии в водонасыщенном состоянии и определяемой по дробимости щебня при сжатии (раздавливании) в цилиндре. Щебень имеет следующие марки: 200, 300, 400, 600, 1000, 1200, 1400. При этом щебень высшей категории качества из изверженных и метаморфических горных пород должен иметь марку не ниже М800, из осадочных карбонатных пород — не ниже М600. Щебень марок по прочности 1400, 1200 и 1000 не должен содержать зерен слабых пород более 5 % по массе, а марок 800, 600 и 400 — не более 10% и 300 и 200 — не более 15% по массе. По прочности исходной горной породы марка щебня при сжатии в насыщенном водой состоянии должна быть выше марки бетона в 1,5. 2 раза. В отдельных случаях допускается применение щебня марки ниже указанной, но только при условии испытания в бетоне и при соответствующем технико-экономическом обосновании.

Наибольший размер зерен шебня применяют в бетонах в зависимости от вида изделия, насыщенности арматуры толщины изделия. Так, для балок, колонн, рам наибольший размер зерен должен быть не более 3/4 наименьшего расстояния между стержнями арматуры, а для плитных изделий — не более 1/2 толщины плиты. Подобно гравию, щебень по крупности зерен делят на четыре фракции: 5. 10, 10. 20, 20. 40 и 40. 70 мм.

В зависимости от формы зерен ГОСТ устанавливает три группы щебня из естественного камня: кубовидную, улучшенную и обычную. Содержание зерен пластинчатой (лещадной) и игловатой формы в них не превышает соответственно 15, 25 и 35% по массе. К пластинчатой и игловатой форме зерен относят такие, в которых толщина или ширина их меньше длины в 3 раза и более.

Содержание пылевидных и глинистых частиц в щебне из изверженных и метаморфических пород, в щебне из гравия и в гравии для всех видов тяжелого бетона не должно превышать 1 % по массе, а в щебне из осадочных пород в зависимости от вида конструкции и ее назначения — не более 2. 3%, в том числе глины в комках — не более 0,25%.

Щебень, гравий и щебень из гравия должны применяться, как правило, в виде фракций, раздельно дозируемых при приготовлении бетонной смеси.

В качестве крупного заполнителя для всех видов тяжелого бетона сборных и монолитных конструкций, изделий и деталей должны использоваться щебень и щебень из гравия с содержанием зерен пластинчатой (лещадной) и игловатой формы в количестве не более 35% по массе.

Щебень высшей категории качества для бетона должен иметь марку по морозостойкости не ниже F 25.

Шлаковый щебень получают дроблением шлака, который образуется в процессе доменной плавки металлов (доменный шлак или при сжигании минерального топлива топливный шлак). Шлаки должны обладать кристаллической структурой и не иметь признаков распада. Шлаковый распад является результатом перехода одних соединений шлака в другие под действием газов, содержащихся в воздухе, и влаги. Этот переход сопровождается увеличением объема образующихся новых соединений, что вызывает растрескивание и распад кусков шлака.

В зависимости от крупности зерен щебень для бетона из доменного шлака выпускают тех же фракций, что и щебень из горных пород: 5. 10; 10. 20; 20. 40 и 40. 70 мм. Содержание зерен пластинчатой и игловатой формы не допускается более 25% по массе.

Прочность щебня характеризуется маркой, определяемой по его дробимости при сжатии (раздавливании) в цилиндре в сухом состоянии. Марка шлакового щебня по прочности бывает Др15, 25, 35, и 45. Для приготовления бетона используют щебень с плотностью не менее 1000 кг/м 3 , содержание пылевидных частиц для щебня марок Др15 и 25 допускается не более 2% по массе, а для щебня марок Др35 и Др45 — 3% по массе.

По морозостойкости щебень подразделяется на шесть марок от F15 до F200. Щебень марки Др 15 используют для бетонов высокой прочности (40 МПа и выше), а щебень марок Др25 и менее используется для бетона прочности 30 МПа и менее.

Виды тяжелого бетона.

В строительных работах широко применяется тяжелый бетон плотностью от 1800 до 2500 кг/м3. Главными составляющими, отвечающими за его вес, являются песок и крупные заполнители. Чаще всего при его производстве используются такие горные породы как гравийный щебень, диабаз, известняк, доломит и гранит.

Тяжелые бетоны существуют в массе вариаций, каждый из них предназначен для применения в определенных условиях, будь то климатические зоны или определенные особенности условий эксплуатации возводимой конструкции. Существуют следующие виды тяжелых бетонов:

Высокопрочный бетон создается на основе высокомарочных цементов, щебня высокой прочности и промытого песка. При укладке смеси и формировании изделий применяют интенсивное уплотнение двойным вибрированием или вибрированием с пригрузом.

Для создания такого бетона используют разные методы повышения качества смеси и активности цемента (виброактивация и домол, использование суперпластификаторов, виброперемешивание) и используют достаточно большое количество вяжущего с малой водопотребностью. Такие смеси получают методом совместного помола суперпластификаторов и высокомарочных цементов.

В процессе бетонирования монолитных сооружений целесообразно применение цементов с низким содержанием алита и целлита (трехкальциевого силиката и трехкальциевого алюмината). Предпочтительно использование белитовых вяжущих.

В качестве крупного заполнителя целесообразно использовать щебень из прочных и твердых горных пород. Песок для создания такого бетона должен обладать пустотностью не выше 40%.

Бетон для сборных железобетонных конструкций предназначенный для производства готовых ЖБИ и ЖБК должен иметь ускоренные темпы затвердевания. Для этого используется тепловая обработка, а сопутствующее увеличение прочности состава при этом определяется его активностью и минералогическим составом вяжущего. Имеет значение также режим тепловой обработки, состав и консистенция смеси и некоторые иные факторы.

Бетон с тонкомолотыми добавками благодаря использованию тонкомолотых наполнителей-добавок может быть необходимым в тех случаях, когда условием прочности допускается большее количество В/Ц, чем требуют условия долговечности бетона, а также в случае, когда физическая прочность материала может быть обеспечена при меньшем расходе вяжущего, чем необходимо по условиям плотности.

Быстротвердеющий бетон отличается высокой прочностью на ранних стадиях твердения, что чаще всего достигается за счет использования в качестве вяжущего быстротвердеющего цемента, а также и различными методами стимуляции твердения (хлористый водород, хлористый кальций, глиноземистый цемент), домалыванием цемента с добавлением гипса (сухим или мокрым методом, доля гипса – 2-5% от общей массы) либо с использованием специальных комплексных добавок. Для получения быстротвердеющего бетона высокого качества применяют алюминатный цемент М500.

Бетон на мелком песке — это особые виды смесей. Мелкие пески характеризуются большей удельной поверхностью и повышенной пустотностью по сравнению с крупными и средними песками. Также они имеют худший зерновой состав, что понижает подвижность бетонной смеси и уменьшает прочность бетона. Для компенсации этого эффекта и получения равноподвижных и равнопрочных бетонов необходимо увеличивать расход цемента. Замена мелким песком крупного оказывает влияние на осадку конуса и на удобоукладываемость смеси. При этом мелкий песок в малой степени раздвигает зерна заполнителя и имеет лучшую способность к удержанию влаги, что приводит к уменьшению оптимального соотношения песка в растворе, и, соответственно, меньше влияет на потребность смеси во влаге.

Гидротехнический бетон применяется при заливке конструкций, работающих в достаточно сложных условиях. Одни постоянно находятся в воде (подводные), другие расположены над водой, подвергаясь ее воздействию лишь эпизодически (надводные). Также различают и дополнительные подвиды, такие как: немассивный и массивный. Также подразделяются бетонные смеси, предназначенные для изготовления безнапорных или напорных конструкций. Классификация по напорно-безнапорным свойствам напрямую связана с коэффициентом водонепроницаемости бетона.

Бетон для гидротехнических сооружений должен быть рассчитан на долгий срок эксплуатации в условиях постоянного или эпизодического омывания водой. В зависимости от предполагаемых условий к такому составу предъявляются не только требования прочности, но также морозостойкости и водонепроницаемости. Конкретные условия могут варьироваться в зависимости от типа и условий работы конструкции.

Бетонные смеси для дорожных и аэродромных покрытий обязаны обеспечить устойчивость к воздействию колоссальных нагрузок от воздействия самолетов, тяжёлой техники и т.д. Для дорожных плит, из которых создаются покрытия аэродромов и дорог, основным расчетным напряжением является сопротивление на изгиб. При расчете состава таких смесей требуется установить пропорции, при которых нужная прочность на растяжение будет сочетаться с достаточной прочностью на сжатие. Зачастую дополнительным требованием является морозоустойчивость конструкции. В качестве покрытий для аэродромов и дорог используют асфальтобетон, который производится на основе битумов и фракционных тонкодисперсных минеральных порошков.

Литой бетон Такие бетоны изготавливаются при большом расходе воды. Данный процесс требует особых мер по предупреждению расслаивания смеси. Для его предотвращения применяют меры, повышающие водоудерживающие свойства смеси: используют водоудерживающие добавки или суперпластификаторы, используют цементы с высокой способностью к водоудержанию, увеличивают содержание в смеси песка. В качестве связующего обычно используют быстротвердеющий цемент и обычный портландцемент.

Бетонная смесь с поверхностно — активными добавками Сегодня достаточно широко распространено применение поверхностно-активных добавок при изготовлении бетонных растворов. Такие добавки призваны улучшить его свойства при одновременной экономии цемента. Подразделяются добавки на гидрофобизирующие (вызывают вовлечение в смесь пузырьков воздуха, что повышает морозостойкость состава) и пластифицирующие с пептизирующим действием (способствуют диспергированию теста и улучшают его текучесть).

В этой статье мы не стали упоминать узкоспециализированные бетонные смеси, которые малоприменимы и используются в редких случаях. Как правило подобные виды тяжелых бетонов изготавливаются по специфическим рецептам, заточенным под конкретные условия дальнейшей эксплуатации железобетонной конструкции. Такие рецепты разрабатываются под конкретные объекты, с обязательным использованием данных геологоразведки, проектных требований и т.п.

Тяжелый бетон

Тяжелый бетон

Содержание:

Бетон является самым востребованным строительным материалом. Он состоит из цемента, песка, воды и заполнителя. Также для улучшения характеристик в состав бетона включают различные добавки. В зависимости от типа заполнителя различают несколько видов – особо легкие, легкие, облегченные, тяжелые, особо тяжелые бетоны. Несмотря на большое разнообразие, наиболее популярным и широко используемым является тяжелый бетон. Он применяется не только в частном и гражданском строительстве, но и в промышленности, при возведении крупных заводов, строительстве мостов и АЭС.

Для получения тяжелых бетонов используются особые заполнители, которые обладают повышенной прочностью, надежностью и, соответственно, более тяжелым весом. Тяжелый бетон является достаточно плотным материалом, его плотность достигает 2500кг/м3.

Состав тяжелых бетонов

Состав тяжелого бетона имеет свои особенности:

  • Цемент. Для приготовления берется определенная марка цемента, например М300 или М600. За основу можно также взять портландцемент, он придает бетону максимальную прочность.
  • Вода. Чистая вода, без примесей кислот (органических или минеральных), жиров, позволяет сделать состав смеси более однородным, не нарушает баланс песка и добавок.
  • Чистый песок. Важно, чтобы песок не имел примесей глины. Глина в составе бетона ухудшает его свойства. Для тяжелых бетонов используется песок с крупными зернами, они позволяют сделать смесь более прочной.
  • Заполнитель. Он является ключевым показателем, который и определяет марку получившегося бетона. Для тяжелых бетонов используется заполнитель из горных пород, такой как щебень, гранит. Дополнительную прочность может придать мраморная крошка. Хотя цены на нее достаточно высокие, но коэффициент надежности при ее применении увеличивается в несколько раз. Диаметр зерен заполнителя достигает 7 см.
  • Добавки. Специальные добавки позволяют улучшить уже существующие характеристики бетонной смеси. Каждая добавка выполняет определенную функцию. Некоторые способны сократить срок застывания цемента и ускорить строительные работы. Другие обеспечивает дополнительную устойчивость к перепадам температур. Все добавки выбираются в зависимости от того какие цели преследуются в процессе строительства.

Для показателя качества бетона используется специальная маркировка. К классу тяжелых бетонов относятся марки от М100 до М500. Определяющими характеристиками при производстве тяжелого бетона является количество цемента в бетонной массе и вид заполнителя.

Основные характеристики и свойства

Для определения степени качества тяжелых бетонов существует ряд показателей:

  • Прочность. Главным показателем является прочность на сжатие. Тяжелый бетон должен выдерживать большие нагрузки. Показатель прочности должен соблюдаться не только при приготовлении бетонной смеси, но и при выполнении всего объема строительных работ. Ведь бетон – материал неоднородный и поэтому колебания прочности при его применении неизбежны. Чем выше марка цемента, который используется при изготовлении бетонной смеси и выше соотношения состава цемент-вода, тем выше показатель прочности бетона.
  • Класс бетона. При выборе тяжелых бетонов необходимо обращать внимание именно на этот показатель, ведь помимо марки бетона, которая позволяет определить количество бетона и качество заполнителя, существует понятия класса. Класс бетона позволяет определить предел прочности на сжатие и предел прочности на растяжение. Для прочности на сжатие используется обозначение В и измерение в МПа. Для показателя осевого растяжения применяется индекс Вг. Показатель растяжения тяжелых бетон в несколько раз хуже показателей его прочности.
  • Морозостойкость. Этот показатель оказывает существенное влияние на прочность. При поочередном замораживании и оттаивании – естественных природных процессах, происходит накопление и испарение влаги в бетоне. Изменение водного состава снижает прочность бетона. Поэтому тяжелые бетоны должны быть устойчивы к воздействию температур. Индекс F позволяет измерить показатель морозостойкости бетона.
  • Водонепроницаемость. При повышенном воздействии воды или ее давлении прочность бетона должна оставаться неизменной. Показатель водонепроницаемости W позволяет определить эту устойчивость.

К основным свойствам тяжелых бетонов относятся:

  • Теплопроводность. Показатель теплопроводности бетона достаточно высок, поэтому его использование при отделке в чистом виде полностью исключено.
  • Пористость. Несмотря на свою плотность, в массе бетона имеются поры. Они образуются путем закупоривания капель воды. Полностью избавиться от пор невозможно, но тщательное перемешивание бетона при его изготовлении и производстве позволяет сократить их количество.
  • Усадка и деформация. При выборе тяжелых бетонов также стоит учитывать, что они дают естественную усадку и деформацию в течение 2-3 лет. С течением времени склонность к деформации увеличивается, несмотря на то, что бетон является достаточно прочным и долговечным строительным материалом.

Все свойства, характеристики и особенности тяжелых бетонов необходимо обязательно учитывать при строительстве.

Производство тяжелых бетонов

Пропорции для производства тяжелого бетона могут отличаться друг от друга в зависимости от вида смеси, которую необходимо получить и целей строительства. Наиболее распространенными являются следующие пропорции:
Цемент – 1 часть (лучше всего использовать цемент высоких марок).
Песок – 2 части (в зависимости от вида строительства может использоваться и мелкозернистый, но в целом для производства тяжелых бетонов предпочтительнее использование песка с крупными зернами).
Заполнитель – 4 части (от обычного крупного щебня до природного мрамора и гранита).
Вода – 0,8 частей.

Существует определенная технология производства тяжелого цемента.

  • Первоначально в емкость для замешивания бетонной массы заливается нужное количество воды.
  • При непрерывном перемешивании добавляются цемент, песок, заполнитель.
  • Затем добавляются все необходимые добавки, пластификаторы, с учетом целей строительства и области применения бетона.
  • Полученный раствор тщательно перемешивается до получения более-менее однородной массы.

Процесс производства тяжелых бетонов достаточно сложный и трудоемкий. Самостоятельное его изготовление даже при небольших объемах работы затрудненно. Ведь процесс правильного перемешивания является одним из ключевых процессов в изготовлении качественного бетона. Даже малые объемы производства затрудняются из-за применения тяжелых заполнителей. При больших объемах производство тяжелого бетона вообще невозможно. Поэтому лучше всего приобретать тяжелый бетон у заводов-изготовителей. Только крупные производители способны изготовить его в соответствии со всеми техническими требованиями и с полным соблюдением технологии производства. Тяжелый бетон считается универсальным, поэтому изготавливается на всех заводах. Перед тем как его приобрести, необходимо обговорить с представителями завода цели, для которых он производится, состав, а также проверить сертификаты соответствия на готовую продукцию и сырье для производства. Весь процесс производства должен выполняться строго в соответствии с ГОСТ.

Классификация

Несмотря на достаточно простой состав, тяжелый бетон имеет свою классификацию. В зависимости от целей строительства различают несколько видов:

  • Высокопрочный. Для производства используется лучший цемент, самых высоких марок, чистый песок и крупный и прочный щебень. Для получения такого бетона при его производстве используют особую технологию вибрирования, она позволяет сделать бетон более плотным. Для достижения особой прочности используются специальные пластификаторы.
  • Железобетонный. Предназначен специально для строительства ЖБ блоков, перекрытий, сооружений.
  • Быстротвердеющий. Основа – быстротвердеющий цемент, а также различные добавки, например, хлористый водород. Благодаря им, срок застывания цемента становится минимальным, при этом качество бетона нисколько не ухудшается.
  • Гидротехнический. Специальная разновидность бетона, который предназначен для проведения работ в условиях повышенной влажности. Такой бетон способен выдерживать воздействие воды в течение длительного времени и гораздо медленнее поддается разрушению.
  • Дорожный. Предназначен для покрытия дорог, способен выдерживать большие технические нагрузки.
  • Литой. Для его производства используется специальный быстротвердеющий цемент, пластификаторы и сравнительно большое количество воды. Главное при производстве такого бетона – предупредить расслаивание.
  • Мелкозернистый. Отличается наличием цементных камней и отсутствием крупных и тяжелых компонентов заполнителя. Применяется в основном при закладке сооружений с тонкими стенами.
  • Кислотоупорный. Устойчив к воздействию самых сильных кислот. Незаменим про строительстве сооружений химической направленности.
  • Жаростойкий. Этот вид тяжелого бетона способен выдерживать достаточно высокие температуры. При этом его прочность остается по-прежнему высокой. Промышленные печи с температурой до 12000С полностью изготавливаются из этой разновидности бетона.
  • Бетонополимеры. Бетон, который пропитывается смолами и заполняется полимерами. Имеет высокую прочность и долговечность.
  • Декоративный. Для его производства могут применяться красители и особый вид заполнителя, например, мраморные камни с интересным природным окрасом. Такой бетон широко используется при возведении парков и аллей, украшении тротуарных дорожек и бордюров. Также популярным является применение декоративных видов бетона для украшения фасадов зданий.

Также различают несколько разновидностей тяжелого бетона в зависимости от типа заполнителя, вида песка и категории пластификаторов и активных добавок.

Области применения

Тяжелые бетоны нашли свое применение в довольно крупных областях промышленного строительства.

  • Производство железобетонных конструкций. Для придания повышенной прочности бетону и в целях сокращения времени затвердевания используются специальные добавки на минеральной основе, а также тепловая обработка.
  • Строительство гидросооружений. Данный вид строительства – процесс особенно трудоемкий и сложный. Поэтому требования к классу и марке бетону предъявляются самые высокие. Для устойчивости всех сооружений используется тяжелый бетон, он обладает повышенной устойчивостью к воздействию влаги и способен прослужить достаточно длительный срок под или над водой, а также в условиях повышенной влажности.
  • Покрытие автомагистралей и дорог аэродромов. Только тяжелый бетон способен выдерживать значительные нагрузки. Из него создаются специальные дорожные плиты, они не разрушаются в результате постоянного воздействия тяжелой техники. К тому же высокая степень морозоустойчивости позволяет сделать дорожные покрытия более долговечными даже в самых суровых погодных условиях.
  • Заливка монолитных фундаментов. Для закладки фундаментов любого объекта промышленного назначения используется тяжелый бетон.
  • Закладка стен и перекрытий при строительстве объектов, требующих особого уровня надежности. Стены банковских хранилищ, государственных объектов, заводов с вредными условиями труда, закладываются только при применении тяжелого бетона.

Тяжелый бетон применяется во всех видах конструкций, которые предназначены для повышенных нагрузок. Его характеристики позволяют сделать его достаточно востребованным, а все изделия, выполняемые из тяжелого бетона, отличает высокий уровень надежности и прочности. В сочетании с достаточно доступными ценами незаменимость тяжелых бетонов увеличивается в несколько раз.

Руководство по проектированию предварительно напряженных железобетонных конструкций из тяжелого бетона

Купить официальный бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку «Купить» и сделайте заказ, и мы пришлем вам цену.

Официально распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль».

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Руководство содержит положения по проектированию железобетонных предварительно-напряженных конструкций из тяжелого бетона, применяемых в промышленном и гражданском строительстве. В руководстве приведены требования главы СНиП II-21-75 «Бетонные и железобетонные конструкции», относящиеся к проектированию указанных конструкций, и положения, детализирующие эти требования, а также дополнительные рекомендации по проектированию и приближенные способы расчета конструкций.

Оглавление

Основные буквенные обозначения

1. Общие указания

Основные расчетные требования

Предварительные напряжения в железобетонных конструкциях

2. Материалы для железобетонных конструкций

Нормативные и расчетные характеристики бетона

Нормативные и расчетные характеристики арматуры

3. Расчет элементов железобетонных конструкций по предельным состояниям первой группы

Расчет железобетонных элементов по прочности

Расчет сечений, нормальных к продольной оси элемента

Тавровые и двутавровые сечения

Тавровые и двутавровые сечения

Элементы, работающие на косой изгиб

Общий случай расчета нормальных сечений изгибаемых элементов

Расчет сечений, наклонных к продольной оси элемента

Расчет элементов постоянного по длине сечения, армированных хомутами без отгибов

Расчет элементов постоянного сечения с отогнутыми стержнями

Расчет элементов с переменной высотой сечения

Расчет элементов без поперечного армирования

Расчет наклонных сечений по поперечной силе при косом изгибе

Расчет наклонных сечений по изгибающему моменту

Внецентренно сжатые элементы

Учет влияния прогиба элемента

Расчет элементов симметричного сечения при расположении продольной силы в плоскости симметрии

Расчет элементов на воздействие предварительного обжатия

Центрально и внецентренно растянутые элементы

Центрально растянутые элементы

Внецентренно растянутые элементы

Расчет элементов прямоугольного сечения при расположении продольной силы в плоскости оси симметрии

Расчет сечений, наклонных к продольной оси элементов

Элементы, работающие на кручение с изгибом

Элементы прямоугольного сечения

Элементы таврового, двутаврового и других сечений, имеющих входящие углы

Элементы кольцевого сечения с продольной арматурой, равномерно распределенной по окружности

Расчет железобетонных конструкций на выносливость

4. Расчет элементов железобетонных конструкций по предельным состояниям второй группы

Расчет железобетонных элементов по образованию трещин

Расчет по образованию трещин, нормальных к продольной оси элемента

Расчет по образованию трещин, наклонных к продольной оси элемента

Расчет железобетонных элементов по раскрытию трещин

Расчет по раскрытию трещин, нормальных к продольной оси элемента

Расчет по раскрытию трещин, наклонных к продольной оси элемента

Расчет железобетонных элементов по закрытию трещин

Расчет по закрытию трещин, нормальных к продольной оси элемента

Расчет по закрытию трещин, наклонных к продольной оси элемента

Расчет элементов железобетонных конструкций по деформациям

Определение кривизны железобетонных элементов на участках без трещин в растянутой зоне

Определение кривизны железобетонных элементов на участках с трещинами в растянутой зоне

Определение продольных деформаций

Приближенные методы расчета деформаций

5. Конструктивные требования

Габариты и очертания элементов конструкций

Защитный слой бетона

Минимальные расстояния между стержнями арматуры

Анкеровка напрягаемой арматуры

Указания по армированию железобетонных элементов

Продольное армирование элементов

Поперечное армирование элементов

Армирование концов предварительно-напряженных элементов

Сварные соединения арматуры

Отдельные указания по конструированию

Приложение 1. Основные типы сварных соединений стержневой арматуры

Приложение 2. Комплексный пример расчета балки покрытия

Приложение 3. Сортамент и условные обозначения арматуры

Этот документ находится в:

  • Раздел: Экология
    • Подраздел: 91 СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ И СТРОИТЕЛЬСТВО
      • Подраздел: 91.080 Конструкции зданий
        • Подраздел: 91.080.40 Бетонные конструкции
  • Раздел: Строительство
    • Подраздел: Справочные документы
      • Подраздел: Справочные пособия к СНиП

Организации:

Guide to Design of Prestressed Reinforced Concrete Structures Made from Heavyweight Concrete

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

РУКОВОДСТВО

ПО ПРОЕКТИРОВАНИЮ ПРЕДВАРИТЕЛЬНОНАПРЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА

ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ПРОЕКТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННЫХ ЗДАНИЙ И СООРУЖЕНИЙ (ЦНИИПромзданий)

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ БЕТОНА И ЖЕЛЕЗОБЕТОНА (НИИЖБ)

РУКОВОДСТВО

ПО ПРОЕКТИРОВАНИЮ ПРЕДВАРИТЕЛЬНОНАПРЯЖЕННЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЗ ТЯЖЕЛОГО БЕТОНА

МОСКВА СТРОЙИЗДАТ 1977

а) 1-я категория — не допускается образование трещин;

б) 2-я категория — допускается ограниченное по ширине кратковременное раскрытие трещин при условии обеспечения их последующего надежного закрытия (зажатия);

в) 3-я категория — допускается ограниченное по ширине кратковременное и длительное раскрытие трещин.

Категории требований к трещиностойкости железобетонных конструкций в зависимости от условий их работы и вида арматуры, а также величины предельно допустимой ширины раскрытия трещин для элементов, эксплуатируемых в условиях неагрессивной среды, приведены в табл. 1.

Нагрузки, учитываемые при расчете железобетонных конструкций по образованию трещин, их раскрытию или закрытию, должны приниматься согласно табл. 2.

Если в конструкциях или их частях, к трещиностойкости которых предъявляются требования 2-й и 3-й категорий, трещины не образуются при соответствующих нагрузках, указанных в табл. 2, их расчет по кратковременному раскрытию и по закрытию трещин (для 2-й категории) или по кратковременному и длительному раскрытию трещин (для 3-й категории) не производится.

Указанные выше категории требований к трещиностойкости железобетонных конструкций относятся к нормальным и наклонным к продольной оси элемента трещинам.

Категории требований к трещиностойкости различных зон по высоте сечения элемента устанавливаются:

а) если рассматриваются нормальные трещины — по виду и классу продольной арматуры рассматриваемой зоны;

б) если рассматриваются наклонные трещины — по виду и классу поперечной и отогнутой арматуры, а при расположении продольной арматуры в стенке двутаврового и таврового сечения — также по виду и классу этой продольной арматуры.

Во избежание раскрытия продольных трещин должны приниматься конструктивные меры (установка соответствующей поперечной арматуры) и, кроме того, величины сжимающих напряжений в бетоне в стадии предварительного обжатия должны быть ограничены (см. п. 1.29).

Примечание. Под кратковременным раскрытием трещин понимается их раскрытие при действии постоянных, длительных и кратковременных нагрузок, а под длительным раскрытием — только постоянных и длительных нагрузок.

1.13(1.18). На концевых участках предварительно-напряженных элементов с арматурой без анкеров в пределах длины зоны передачи напряжений (см. п. 2.26) не допускается образование трещин при действии постоянных, длительных и кратковременных нагрузок, вводимых в расчет с коэффициентом перегрузки 1.

Указанное выше требование допускается не учитывать для части сечения, расположенной по его высоте от уровня центра тяжести приведенного сечения до растянутой от действия усилия предварительного обжатия грани, если в этой части сечения отсутствует напрягаемая арматура без анкеров, а длина зоны передачи напряжений не превышает 2hQ (где h0 определяется по сечению у грани опоры). При этом следует выполнять указания п. 5.49.

Категория требований к трещиностойкости железобетонных конструкций

и предельно допустимая ширина кратковременного и длительного

раскрытия трещин а и а при арматуре Т1 кр т, дл

Условия работы конструкций, эксплуатируемых в неагрессивной среде.

стержневой классов A-I, А-И и А-III

стержневой классов A-IV, Ат-IV. A-V, Ат-V и Атп-V; проволочной классов В-I и Вр-1

стержневой класса Ат-VI; проволочной классов B-JI, Вр-Н и К-7 при, диаметое проволоки 4 мм и более

проволочной классов В-II и Вр-П при диаметре проволоки 3 мм. класса К-7 при диаметре проволоки 3 мм и менее

1. Элементы, воспринимающие давление жидкостей, газов, а также эксплуатируемые в грунте ниже

а) при полностью растянутом сечении

уровня грунтовых вод

б) при частично сжатом сечении

3-я категория; ят.кр = 0,3 мм;

3-я категория; Ят.кр = 0,3 мм; ат.дл = 0,2 мм

2-я категория; .кр === 0,1 ММ

2. Элементы хранилищ сыпучих тел, непосредственно воспринимающие их давление

3-я категория; ат.кр=0,3 мм; ^т.дл = —0,2 мм

3-я категория; «т.кр = 0,3 мм;

Продолжение табл. 1

Категория требований к трещиностойкости железобетонных конструкций и предельно допустимая ширина кратковременного к длительного раскрытия трещин а и а при арматуре

Условия работы конструкций, эксплуатируемых в неагрессивной среде

стержневой классов A-I, А-П, А-Ш

стержневой классов A-IV, Ат-IV, A-V, Ат-V и Атп-V; проволочной классов В-I и Вр-1

стержневой класса At-VI;

проволочной классов В-П, Вр-П, н К*7 при диаметре проволоки 4 мм и более

проволочной классов В-П и Вр-П при диаметре проволоки 3 мм, класса К-‘* при диаметре проволоки 3 мм и менее

3. Прочие элементы, эксплуатируемые

а) на открытом воздухе, а также в грунте выше уровня грунтовых вод

я категория Ят.кр — 0,4 мм; йт.дл^О^ мм

3-я категория; ат.кр—0,4 мм; атЛ = 0,3 мм

2-я категория Ят.кр=^0,05 мм

б) в закрытом помещении

3-я категория; ат.Кр = 0,4 мм; ат.дл = 0,3 мм

3-я категория; Ят.кр=0,4 мм; Йт.дл — == 0,3 мм

3-я категория; Ят.кр—0,15 мм; Лт.дл” 0,1 ММ

2-я категория Лт.кр“0,15 мм

Примечания. 1. Для конструкций, рассчитываемых на выносливость, предельно допустимая ширина раскрытия трещин принимается равной соответствующим значениям ширины длительного раскрытия трещин

2. При использовании канатов класса К-7 диаметр проволоки принимается равным одной трети диаметра каната.

принимаемые при расчете по

Нагрузки, коэффициенты перегрузки п и коэффициенты точности натяжения тт,

предельным состояниям второй группы

к трещино-стойкости железобетонных конструкций

по раскрытию трещин

по образованию трещин

по закрытию трещин

Постоянные, длительные и кратковременные нагрузки; /г>1*, mT = 1**

Постоянные, длительные и кратковременные нагрузки; /г>1*, /ят 1.

Примечания: 1. Длительные кратковременные нагрузки принимаются с учетом указаний п. 1.10.

2. Особые нагрузки учитываются в расчете по образованию трещин в тех случаях, когда наличие трещин приводит к катастрофическому положению (взрыв, пожар и т. п.).

3. Коэффициент точности натяжения mт определяется согласно п. 1,24.

4. При действии многократно повторяющихся нагрузок принимаются те же коэффициенты перегрузки, что и при расчете на выносливость согласно главе СНиП по на грузкам и воздействиям (т. е. для всех элементов.

кроме подкрановых балок,

1.14(1.19). В случае, если сжатая при эксплуатационных нагрузках зона предварительно-напряженных элементов не обеспечена расчетом в стадии изготовления, транспортирования и возведения от образования трещин, нормальных к продольной оси, следует учитывать снижение трещиностойкости растянутой при эксплуатации зоны элементов, а также увеличение их кривизны. Для элементов, рассчитываемых на воздействие многократно повторяющейся нагрузки, образование таких трещин не допускается.

1.15(1.20). Для железобетонных слабоармированных элементов, характеризуемых тем, что их несущая способность исчерпывается одновременно с образованием трещин в бетоне растянутой зоны, площадь сечения продольной растянутой арматуры должна быть увеличена по сравнению с требуемой из расчета по прочности не менее чем на 15%.

Такое увеличение армирования следует производить при выполнении условий

3. Перекрытия с ребристым потолком и элементы

лестниц при пролетах:

4. Элементы покрытия зданий сельскохозяйственного производственного назначения при пролетах:

5. Навесные стеновые панели (при расчете из плоскости) при пролетах:

В табл. 3: I — пролет балок или плит; для консолей принимают l — где 1\ —вылет консоли.

Для не защищенных от солнечней радиаций конструкций, предназначенных для эксплуатация в климатическом подрайоне IVA согласно главе СНиП по «строительной климатологии н геофизике, при определении перемещений необходимо учитывать температурные климатические воздействия.

Для железобетонных элементов, выполняемых со строительным подъемом, значения предельно допустимых прогибов могут быть увеличены на высоту строительного подъема, если это не ограничивается технологическими или конструктивными требованиями.

Величины предельно допустимых прогибов для других случаев, не предусмотренных табл. 3, устанавливаются во специальным требованиям, но при этом они не должны превышать Viso пролета и V75 вылета консоли.

Если в нижележащем помещении с гладким потолком имеются расположенные поперек пролета элемента I постоянные перегородки, не являющиеся опорами, с расстоянием между ними /п> то прогиб элемента в пределах расстояния /п (отсчитываемый от линии, соединяющей верхние точки осей перегородок) может быть допущен до V200 in, однако при этом предельный прогиб всего элемента должен быть не более Viso *•

1Л8(1.21). Для не связанных с соседними элементами железобетонных плит перекрытий, лестничных маршей, площадок и т. п. должна производиться дополнительная проверка ло зыбкости: добавочный прогиб от кратковременно действующей сосредоточенной нагрузки 100 кге при наиболее невыгодной схеме ее приложения должен быть не более 0,7 мм.

1.19. При расчете перекрытия по предельным состояниям второй группы вес расположенных на нем перегородок учитывается следующим образом:

а) нагрузка от веса жестких перегородок (например, железобетонных сборных, выполняемых из горизонтальных элементов, железобетонных и бетонных монолитных, каменных и т. п.) принимается сосредоточенной по концам перегородки, а при наличии проемов — и у краев проемов;

б) для прочих перегородок 60% их веса принимается распределенным по длине перегородки (на участках между проемами), а 40% сосредоточенным по концам перегородки и у краев проемов).

1.20. Распределение местной нагрузки между элементами сборных перекрытий, выполняемых из многопустотных или сплошных плит при условии обеспечения качественной заливки швов между плитами, допускается производить с учетом следующих правил:

а) при расчете по всем предельным состояниям принимается следующее распределение нагрузки от веса перегородок, расположенных вдоль пролета одинаковых по сечению плит:

если перегородка расположена в пределах одной плиты, то на эту плиту передается 50% веса перегородки, а по 25% ее веса передаются на две смежные плиты;

если перегородка опирается на две соседние плиты, то вес перегородки распределяется поровну между ними;

б) при расчете по предельным состояниям второй группы местные сосредоточенные нагрузки, расположенные в пределах средней трети пролета плиты, распределяются на ширину, не превышающую длины этого пролета, при расчете по предельным состояниям первой группы такое распределение сосредоточенных нагрузок может быть допущено лишь при условии соединения шпонками смежных плит по длине.

ПРЕДВАРИТЕЛЬНЫЕ НАПРЯЖЕНИЯ В ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЯХ

1.21(1.24). Величину предварительного напряжения а0 (а также а0) соответственно в напрягаемой арматуре А и А’ без учета потерь следует назначать таким образом, чтобы выполнялись условия:

при механическом способе натяжения:

а) для стержневой арматуры

0,32 Ra н ^ 2 , при электротермическом способе натяжения, равные:

I — длина натягиваемого стержня (расстояние между наружными гранями упоров), м. Кроме того, при электротермическом способе натяжения величину а00) следует назначать с учетом допустимых температур нагрева согласно «Руководству по технологии изготовления предварительно-напряженных железобетонных конструкций»; при этом в случае отсутствия данных о технологии изготовления конструкций величина о0 принимается не более 7 000 кгс/см 2 .

При наличии перегибов проволочной арматуры напряжения 2 ,

1.23(1.27). При определении потерь предварительного напряжения от усадки и ползучести бетона по поз. 8 и 9 табл. 4 должны учи тываться следующие указания:

а) если заранее известен срок загружения конструкции (например, при контрольных заводских испытаниях), потери от усадки и ползучести бетона умножаются на коэффициент р, определяемый по формуле

но принимаемый не более единицы; здесь * — время в сутках отсчитываемое: при определении потерь от ползучести — со дня обжатия бетона, потерь от усадки — со дня окончания бетонирования.

При проектировании стропильных балок и ферм, ригелей перекрытия массового заводского изготовления допускается потери от усадки и ползучести умножать на коэффициент (3 при *=65 сут.;

б) для конструкций, предназначенных для эксплуатации при влажности воздуха окружающей среды ниже 40%, потерн от усадки и ползучести бетона должны быть увеличены на 25%, за исключением конструкций, предназначенных для эксплуатации в климатическом подрайоне IVA согласно главе СНиП по строительной климатологии и геофизике, не защищенных от солнечной радиации, для которых указанные потери увеличиваются на 50%;

в) допускается использовать более точные методы для определения величин потерь от усадки и ползучести бетона, обоснованные в установленном порядке, если известны сорт цемента, состав бетона, условия изготовления и эксплуатации конструкций и т. п.

1.24(1.28). Величина предварительного напряжения в арматуре сто (сг ) вводится в расчет с коэффициентом точности натяжения арматуры

Понравилась статья? Поделиться с друзьями:
Строителство и ремонт

Добавить комментарий

%d такие блоггеры, как: