Устойчивое развитие: как НОСТРОЙ меняет правила игрыКак национальный реестр строителей влияет на прозрачность и качество строительстваООО - Первые шаги к успешному бизнесуСоциальная ответственность и СРО: вклад в обществоЭффективность проектного менеджмента в строительстве: влияние СРОДиалог с властью: СРО как защитник интересов строительной отраслиТрансформация городской среды через проекты СРОСРО в строительстве: не только правила, но и этикаНОПРИЗ в эпицентре инновацийНОСТРОЙ и зеленое будущее

неразрушающий контроль бетона

Неразрушающий контроль, приборы неразрушающего контроля, оборудование неразрушающего контроля, неразрушающий ультразвуковой контроль, неразрушающий контроль бетона, приборы неразрушающего контроля бетона, измеритель прочности бетона купить, приборы обследования зданий и сооружений

Содержание

неразрушающий контроль бетона

Неразрушающий контроль бетона – методы и оборудование

Качественно изготовленные бетонные конструкции способны прослужить не один десяток лет. Одним из наиболее важных и ключевых методов, служащих для определения их надежности, является неразрушающий контроль бетона, выясняющий однородность материала, его прочность, толщину защитного слоя и другие немаловажные показатели готовых изделий.

Методы неразрушающего контроля

Контрольные замеры производятся как в лабораториях, так и непосредственно на строительных площадках.

Неразрушающим контролем называется определение свойств и характеристик бетонных конструкций без нарушения их пригодности и возможности дальнейшей эксплуатации. Следует отметить, что все существующие методы контроля представляют собой косвенные способы получения необходимых показателей. Каждый из способов имеет свои неоспоримые достоинства и некоторые ограничения в использовании, поэтому выделить какой-либо из них не представляется возможным.

Наиболее простым считается контроль линейных замеров изделия, а также соответствие возможным отклонениям в вертикальном и горизонтальном направлении конструктивных элементов сооружения в целом. При этом используют:

К неразрушающим методам контроля на прочностные характеристики и однородность внутренней структуры бетона относятся:

  • местные разрушения – на отрыв со скалыванием, на скалывание ребра, либо отрыв стальных дисков;
  • ударное воздействие – величина отскока, импульс при ударе, искусственная деформация;
  • ультразвук.

На точность контроля могут влиять некоторые факторы:

  • марка и состав цементной смеси;
  • разновидность заполнителя;
  • карбонизация – изменения, возникающие в поверхностном слое под воздействием углекислого газа;
  • условия схватывания и отвердевания;
  • возраст бетона;
  • влажностные и температурные параметры поверхности.

Методы местных разрушений

Подобные способы считаются наиболее точными из всех существующих неразрушающих методов, так как в них предусматривается использование универсальной и достаточно простой градуировочной зависимости, в которой принимаются во внимание два параметра:

  • разновидность бетона (относится к легкому или тяжелому типу);
  • крупность заполнителя.

Методом отрыва со скалыванием регистрируют сопротивление бетона при местном разрушении изделия в момент отрыва его фрагмента анкерным устройством. Данный способ является достаточно точным, но трудоемким. К тому же, его использование невозможно в конструкциях со слишком тонкими стенками и на густоармированных участках.

Метод скалывания ребра предусматривает скол выступающего угла бетонной конструкции. Для него не требуется выполнять высверливание и другие подготовительные работы, но при толщине защитной прослойки менее чем 20мм его использование не допустимо. Применяют скалывание ребра для контроля за линейными конструкциями, такими как ригели и сваи, перемычки и колонны, балки и др.

Метод стальных дисков используют в случаях, когда два предыдущих способа применять не допускается из-за различных ограничений. Он менее трудоемок, но имеет свои недостатки. Дело в том, что металлические диски, которые в дальнейшем необходимо будет оторвать, следует наклеивать до начала испытания за 5-24 часа, в зависимости от вида клеевого состава.

К недостаткам всех трех методов можно отнести:

  • частичное разрушение поверхности;
  • необходимость предварительного определения количества и глубины расположения арматуры;
  • длительность и трудоемкость процесса.

Методы ударного воздействия

Способ неразрушающего контроля методом ударного импульса считается наиболее востребованным, а поэтому – распространенным. Он предусматривает фиксацию энергии удара именно в тот момент, когда боек ударного инструмента соприкасается с бетонной поверхностью. Данный метод позволяет установить класс бетона, измерить его прочность, а также упругость относительно разных углов наклона к испытываемой поверхности. Он помогает выявить зоны недостаточного уплотнения, либо неоднородности структуры материала.

По показателям нескольких замеров производится усреднение показателей, что является окончательным результатом проверки.

Метод упругого отскока включает в себя замеры пути обратного хода ударника после его воздействия на поверхность бетона или прислоненную к ней стальную пластину. При данном варианте контроля кроме прочности материала определяется его твердость, для чего контролирующие приборы комплектуются склерометрами.

Метод пластической деформации предусматривает измерение габаритов отпечатка, оставленного на бетоне после ударения о поверхность стального шарика. Подобный способ является устаревшим, но из-за малой стоимости оборудования он до сих пор остается востребованным.

Ультразвуковой метод

Такой способ контроля позволяет при помощи ультразвука проверять прочностные свойства бетона в пределах всего «тела» конструкции. Кроме этого существует возможность определения:

  • глубины и размера трещин;
  • качества бетонирования;
  • возможных дефектов.

В процессе проведения проверки производится поверхностное и сквозное прозвучивание с использованием специальных датчиков, находящихся с одной или двух-четырех сторон подвергающегося тестированию бетонного изделия. К недостаткам данного вида контроля относится невозможность использования ультразвукового способа для исследования высокопрочных бетонов.

Приборы для измерений

Устройства, использующиеся для проведения неразрушающего контроля, представляют собой приборы, производящие оперативную диагностику состояния материала без нарушения его целостности. В технической литературе их называют приборами неразрушающего контроля с условным обозначением «ПНК».

Измерения производятся в соответствии с нормативами и техническим заданием заказчика. Неразрушающий метод контроля бетона включает в себя проверку следующих параметров:

  • прочности конструкции;
  • твердости материала;
  • наличия внутренних пустот;
  • глубины и качества заделки арматуры;
  • влагонепроницаемости;
  • морозоустойчивости;
  • величины защитной прослойки и др.

ПНК подразделяются на несколько групп.

Измерители прочности

Оборудование производит диагностику бетона на прочность без механических разрушений конструкции в целом. Результаты получаются путем косвенных замеров и перерасчетов полученных величин, непосредственно отвечающих за прочностные характеристики или статически с ними взаимосвязанные. Прочность характеризуется сопротивлением внешним механическим воздействиям путем появления внутренних напряжений, способных противостоять разрушению материала.

К оборудованию, предназначенному для неразрушающего контроля прочности, относятся:

  • механические измерители, позволяющие определять прочностные свойства способом упругого отскока. В зависимости от модели, они производят измерения тонкостенных (до 100мм) и толстостенных (более 100мм) изделий из бетона. В первом случае ПНК имеют уменьшенную энергию удара. Механические приборы отличаются наличием погрешности до 15-20 процентов;
  • электронные измерители способны получить измеряемые величины с высокой долей точности (погрешность менее чем 5 процентов для бетонных изделий со стенками до 100мм). Электронный прибор для измерения прочности бетона используют для стабильного измерения прочностных показателей методами упругого отскока с автоматическим учетом направления и угла наклона измерителя. К тому же, оборудование способно определить степень карбонизации. Данная разновидность ПНК имеет возможность подключения к компьютерной технике;
  • измерители электронного типа с выносными преобразователями. При определении прочности тонкостенных изделий они имеют небольшую погрешность – в пределах пяти процентов. Результаты измерений учитывают процессы карбонизации, а выводятся они в виде графических гистограмм. Допускается производить управление оборудованием через компьютер;
  • электронные измерители, использующие метод ударного импульса и передающие данные непосредственно на компьютер. Приборы имеют 7-15 процентную погрешность и усовершенствованные возможности. Одни модели оснащены самовзводными склерометрами, отвечающими за определение твердости бетона. Они производят удар с усиленной энергией. Другие модели имеют светодиодную индикацию и расширенный тепловой режим;
  • электронные измерители, работающие по методу отрыва со скалыванием. Они представляют собой двухцилиндровый гидравлический пресс, оснащенный опорами и имеющий встроенную электронику;
  • двухпараметрические электронные измерители, сочетающие методы и отскока, и ударного импульса. Их погрешность составляет 8 процентов, а отличаются приборы возможностью внесения оперативных корректировок в процессе работы;
  • ультразвуковые измерители способны определить прочность бетонной глыбы, ее однородность и внутренние дефекты на основании времени и, соответственно, скорости прохождения ультразвука сквозь тело бетона. Исследования и измерения производят на фиксированной прозвучивающей базе. Некоторые модели комплектуются выносными датчиками, другие подключаются к ПК через специальные кабели;
  • микроскоп, предназначающийся для определения величины трещин.

В ходе проводящихся проверок в приборах, производящих неразрушающие методы контроля прочности бетона, происходит изнашивание их механических частей, что влияет на точность результатов измерений. Для проверки соответствия показаний эталонным значениям измерители подвергают периодической диагностической проверке на калибровочных наковальнях.

Измерители твердости

Твердость представляет собой возможность сопротивления материала в случае пластического деформирования или местного воздействия на его поверхность более твердого материала. Данное свойство зависит одновременно от прочности и пластичности бетона, а определяется оно несколькими видами портативных твердомеров:

Анализаторы влажности

Под термином «влажность» понимают процентное отношение массы влаги, содержащейся в исследуемом материале, к его массе в сухом или влажном состоянии. Основным направлением использования влагомеров является контроль за влажностью древесины, поэтому первоначально они настроены на показатели древесных пород. При необходимости контроля за бетонными поверхностями изготовители к приборам прилагают инструкции, в которых находятся таблицы соответствия влажности бетона или других материалов к влажности древесины.

Неразрушающий контроль подразумевает измерение не самой влажности, а связанного с ней параметра. В дальнейшем результат «переводят» в показатель влажности.

Влагомеры подразделяются на два основных виды:

  • игольчатые, производящие замеры электрического сопротивления, зависящего от показателя влажности, между погруженными в бетон контактными иглами;
  • бесконтактные, определяющие контролируемые величины на основании затухания электромагнитных волн.

Измерители защитного слоя

Оборудование можно с уверенностью отнести к приборам поиска арматуры. Принцип их действия состоит в искажении электромагнитного сигнала устройства в случае его «встречи» с арматурой, расположенной в теле бетона. В результате, полученные показатели преобразуются в информацию о месторасположении металлического каркаса.

В качестве аппаратуры применяются:

  • локаторы арматуры, использующиеся не только для обнаружения места нахождения стальных стержней, но и для определения размера защитной прослойки;
  • профометры, определяющие место расположения стержней, их диаметр, а также реальное отдаление от поверхности;
  • измерители, помогающие оперативно выявить положение и габариты арматуры, а также толщину защитного бетонного слоя.

Каждый из приборов контроля выполняет предназначенную для него функцию. В целом они создают реальную картину, относящуюся к качеству бетонного изделия, либо конструкции. Все измерители основаны на том или ином методе проверки, но в итоге полученные результаты помогают определить, насколько конструкция остается надежной и прочной.

Определение прочности бетона

Определение прочности бетона при обследовании зданий и сооружений

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180-2012), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105-2010 разделены на три группы:

  1. Разрушающие;
  2. Прямые неразрушающие;
  3. Косвенные неразрушающие.

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему прибегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

В основном применяются методы неразрушающего контроля. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624-2012, методы ударного импульса и упругого отскока по ГОСТ 22690. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований. Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм,но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ, в том числе приведенные в списке литературы [1,2]. В табл. 1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона [3].

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционнорегрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов [4] прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

Рис. 1 . Зависимость между прочностью бетона и скоростью ультразвуковых волн

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис.1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что допустимо по требованиям СП 13-102- 2003. При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля [2]. Учитывая это, а также обозначенные выше проблемы, далее более подробно рассмотрим прямые методы контроля.

К данной группе по ГОСТ 22690-2015 относится три метода:

  1. Метод отрыва;
  2. Метод отрыва со скалыванием;
  3. Метод скалывания ребра.

Контроль прочности бетона методом отрыва

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем. На сегодняшний день могут применяться современные двухкомпонентные клеи,производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» и др.). В отечественной литературе по испытанию бетона [5, 6] методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

Рис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (Rbt),по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии [7]:

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как ПОС-50МГ4, ПИВ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5, ГПНС-5. Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105-2010, а также предшествующем ГОСТ Р 53231-2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко применяемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Контроль прочности бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости:

где m1— коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически на любом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Контроль прочности бетона методом скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции. Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости:

где m — коэффициент, учитывающий крупность заполнителя.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

Испытание бетона

Как известно, бетон это искусственный каменный материал, получаемый из правильно подобранной бетонной смеси после её формования и твердения.

Бетоны классифицируются по нижеперечисленным основным признакам:

  • по плотности (особо тяжёлые – плотность более 2500 кг/м3, тяжёлые – плотность от 1800 до 2500 кг/м3, легкие – плотность от 500 до 1800 кг/м3, особо легкие – плотность менее 500 кг/м3)
  • по назначению (обычный, гидротехнический, жаростойкий, теплоизоляционный, дорожный, и т. д.)
  • по виду вяжущего (цементные, силикатные, гипсовые, на жидком стекле, полимерные и т. д.)
  • по виду заполнителя (на плотных заполнителях, на пористых заполнителях и т. д.)
  • по крупности зерен заполнителя (крупнозернистые и мелкозернистые)
  • по структуре (плотные, крупнозернистые, поризованные, ячеистые)
  • по условиям твердения (естественного твердения, автоклавного твердения и т. д.)

Строительная лаборатория «Строймат и К» проводит экспертизу бетона и бетонной смеси. Экспертиза бетона проводится нами как на строящихся объектах, так и на построенных. Экспертиза бетона проводится с применением современного оборудования и позволяет определить многие физико-механические характеристики бетона.

Испытание бетона на предмет определения его строительно-технических характеристик проводится нами как в условиях стационарной лаборатории по контрольным образцам (плотность, прочность, морозостойкость, водонепроницаемость), так и на стройплощадке — разрушающими (выбуривание образцов кернов) и неразрушающими методами контроля прочности бетона (отрыв со скалыванием, упругий отскок, ультразвуковое прозвучивание).

Предлагаем Вам следующие испытания:

  1. Определение морозостойкости бетона по контрольным образцам
  2. Определение водонепроницаемости бетона по контрольным образцам
  3. Испытание образцов бетона
  4. Отбор кернов. Определение прочности бетона по кернам, отобранным из конструкции
  5. Неразрушающий контроль бетона

1. Определение морозостойкости бетона по контрольным образцам по ГОСТ 10060

В качестве образцов используются кубы с ребром 100 мм.
Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект

Чтобы рассчитать стоимость заказа, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • позвонить по телефонам: 84954307697; 84997921114; 89166009893

Морозостойкость бетона — способность сохранять физико-механические (прочность при сжатии, плотность и т.д.) свойства при многократном переменном замораживании и оттаивании. Морозостойкость бетона характеризуют соответствующей маркой по морозостойкости (F).

Марка бетона по морозостойкости (F) характеризуется количеством циклов замораживания и оттаивания образцов бетона, испытанных по базовым методам, при которых сохраняются первоначальные физико-механические свойства по прочности и потери массы. Цикл испытания — совокупность одного периода замораживания и оттаивания образцов.

Основные образцы — образцы, предназначенные для проведения испытаний замораживания и оттаивания. Контрольные образцы — образцы, предназначенные для определения прочности бетона на сжатие перед началом испытания основных образцов.

Морозостойкость бетона определяют при достижении им проектного возраста (28 суток), что подтверждается проведением конечных испытаний образцов-кубов бетона на прочность при сжатии. Условия испытания для определения морозостойкости в зависимости от метода и вида бетона принимают по таблице 1.

Метод и марка бетона по морозостойкости

Среда и температура замораживания, °С

Среда и температура замораживания, °С

Воздушная, минус 18±2

Все виды бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся при действии минерализованной воды

5 %- ный водный раствор хлорида натрия

5 %- ный водный раствор хлорида натрия, 20±2

Бетоны дорожных и аэродромных покрытий и бетонных конструкций, эксплуатирующихся при действии минерализованной воды

5 %- ный водный раствор хлорида натрия

Воздушная, минус 18±2

5 %- ный водный раствор хлорида натрия, 20±2

Все виды бетонов, кроме бетонов дорожных и аэродромных покрытий и бетонов конструкций, эксплуатирующихся при действии минерализованной воды и легких бетонов марок по средней плотностью менее D1500

5 %- ный водный раствор хлорида натрия минус 50±5

Все виды бетонов, кроме легких бетонов марок по средней плотности менее D1500

Морозостойкость бетона определяют в проектном возрасте (после итоговых испытаний), установленном в нормативно-технической и проектно
Количество изготовляемых кубов-образцов бетона с ребром 100 мм:

  • при 1-ом и 2-ом методе определения морозостойкости принимают равным 18 шт. (6 контрольных + 12 основных)
  • при 3-м методе -12 шт. (6 контрольных + 6 основных)

Образцы для испытаний должны быть без внешних дефектов, разброс значений плотности отдельных образцов в серии (до их насыщения) не должен превышать 30 кг/м3. Массу образцов определяют с погрешностью не более 0,1 %. Образцы изготавливают и испытывают сериями.

Число циклов испытания основных образцов бетона в течение одних суток должно быть не менее 1. Испытания надо вести непрерывно. При вынужденных перерывах в испытании образцы должны храниться в замороженном состоянии в морозильной камере при температуре не выше минус 10°С, при первом и втором методах образцы хранят укрытыми влажной тканью, при третьем методе – в 5%-ном водном растворе хлорида натрия.

Соотношение между числом циклов испытаний и маркой бетона по морозостойкости, принимают по таблице 4.

2. Определение водонепроницаемости бетона по контрольным образцам по ГОСТ 12730.5.

В качестве образцов используются кубы с ребром 150 мм или цилиндры диаметром и высотой 150 мм.
Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект

Чтобы рассчитать стоимость заказа, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • позвонить по телефонам: 84954307697; 84997921114; 89166009893

Марка бетона по водонепроницаемости определяется максимальной величиной давления воды, при котором не наблюдается ее просачивания через образцы, изготовленные и испытанные на водонепроницаемость согласно требованиям действующих государственных стандартов. Для бетонных конструкций, с требованиями повышенной плотности и коррозионной стойкости, а также по ограничению проницаемости, назначают марки по водонепроницаемости.

Согласно требованиям ГОСТ 26633 установлены следующие марки по водонепроницаемости: W2; W4; W6; W8; W10; W12; W14; W16; W18; W20. Конкретные марки бетона конструкций по водонепроницаемости устанавливаются в соответствии с нормами проектирования и указываются как в стандартах и технических условиях так и в проектной документации (чертежах) на эти конструкции. Для проведения испытаний применяется установка УВФ-6, которая имеет шесть гнезд для крепления цилиндрических обойм с шестью образцами-цилиндрами.

Данная установка предназначена для испытания бетонных образцов-цилиндров на водонепроницаемость по методу «мокрого пятна». УВФ-6 можно применять в закрытых помещениях с температурой воздуха +5 °C … +45 °C и влажностью до 80 %. Все бетонные образцы (одна серия) должны быть в проектном возрасте (28 суток). Образцы бетона не должны иметь дефектов в виде трещин или сколов. Давление воды подается на нижнюю торцевую поверхность бетонных образцов, установленных в обоймы, которые надежно закреплены в гнездах установки. Начиная со ступени в 0,2 МПа, выдерживают установленное давление на каждой ступени в течение 16 часов (для образцов высотой 15 см).

Испытание длится до тех пор, пока на верхней торцевой поверхности образца не появятся признаки фильтрации воды в виде капель или мокрого пятна. Испытание останавливается и фиксируется давление при котором образовалось мокрое пятно. Водонепроницаемость каждого образца оценивают максимальным давлением воды, при котором еще не наблюдалось ее просачивание через образец. Водонепроницаемость серии образцов оценивают максимальным давлением воды, при котором на четырех из шести образцов не наблюдалось просачивание воды.

Марку бетона по водонепроницаемости принимают по ГОСТ 12730.5, табл. 3. Кроме метода «мокрого пятна» применяется ускоренный метод определения водонепроницаемости бетона по его воздухопроницаемости. Для проведения испытаний используют прибор типа «АГАМА-2Р». Прибор и методика испытаний гостирована (ГОСТ 12730.5, Приложение 4). В качестве образцов, кроме цилиндров, можно использовать кубы с размером ребра 15 см. Принцип работы прибора заключается в измерении времени прохождения единицы объема газа через образец-куб.

При параллельных испытаниях одних и тех же серий образцов цилиндров бетона и образцов кубов бетона (в проектном возрасте) на установке УВФ-6 и приборе АГАМА-2Р была выявлена закономерность — расхождение в показателях водонепроницаемости бетона до марок W6 — W8 практически отсутствует или в пределах ± 10%. При увеличении марки бетона по водонепроницаемости показатели по прибору АГАМА-2Р получаются завышенными по отношению к методу «мокрого пятна». Бетон марки по водонепроницаемости W12, определенной на установке УВФ-6, соответствовал бетону марки W16 — W18, определенной на приборе АГАМА — 2Р. Таким образом, использование прибора АГАМА — 2Р целесообразно на бетонах с низкой и средней маркой по водонепроницаемости, в отличие от установки УВФ-6. У прибора АГАМА — 2Р есть и другая проблема. Эмпирически установлено, что надежность показателей достигается при температуре воздуха 20 ±2 °С и влажности воздуха 60±5%.

3. Испытание образцов бетона. Определение прочности бетона на сжатие по ГОСТ 10180.

В качестве образцов используются кубы с ребром 300, 200, 150, 100 мм или цилиндры диаметром 300, 200, 150, 100 мм, высота цилиндра составляет два диаметра.

Формы для данных образцов вы можете приобрести у нашего партнера МетЭдАргоКапПроект

Чтобы рассчитать стоимость заказа, нужно:

  • оформить заявление, которое нужно отправить к нам на почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
  • позвонить по телефонам: 84954307697; 84997921114; 89166009893

Все, кто сталкивался с бетоном, знают, что самый простой и доступный метод определения прочности бетона — это испытание образцов бетона, изготовленных из данного бетона. Этим методом пользуются как производители (поставщики) бетона (для самоконтроля), так и его потребители (для контроля производителя). На первый взгляд, все очень просто. Отобрал пробу бетонной смеси и изготовил из нее серии контрольных образцов кубов для определения прочности бетона всей партии в промежуточном и проектном (28 суток) возрастах. В дальнейшем испытал. Если Вы производитель бетона — то своими силами, если — потребитель, то через независимую строительную лабораторию. На самом деле, уже при изготовление образцов бетона надо знать основные моменты:

1. Образцы изготавливают с нормируемыми размерами.

2. Для контроля прочности бетона на сжатие целесообразнее использовать металлические 2-х гнездные формы типа 2ФК-100 (каждая ячейка формы в виде куба с внутренним размером ребра 100 мм).

Данная металлическая форма (при правильном ее использовании) обеспечит вам:

  • нормируемые допуски в перпендикулярности смежных граней (отклонение не более 1 мм) и в размерах готового образца (отклонения в пределах ± 1 мм по ребрам)
  • удобство при изготовлении образцов (малый вес, быстрота и технологичность при сборке-разборке)

3. Пробу бетонной смеси для изготовления образцов бетона отбирают из средней части замеса, а при непрерывном бетонировании (например бетононасосом) в три приема в течении не более 10 минут (обязательно перемешивают перед укладкой в форму).

4. Укладку и уплотнение бетонной смеси следует производить не позднее, чем через 20 мин после отбора пробы, причем бетонную смесь заполняют в форме слоями высотой не более 100 мм. При осадке конуса (ОК) смеси более 10 см (П3 — П5), смесь укладывают штыкованием стальным стержнем диаметром 16 мм с закругленным концом. Число нажимов стержня рассчитывают из условия, чтобы один нажим приходился на 10 см 2 верхней открытой поверхности образца, штыкование выполняют равномерно по спирали от краев формы к ее середине. При ОК менее 10 см (П1, П2) — бетонную смесь дополнительно уплотняют вибрированием, до прекращения ее оседания, выравнивания ее поверхности, появления на ней тонкого слоя цементного теста и прекращения выделения пузырьков воздуха.

5. Образцы изготавливают и испытывают сериями. Число образцов в серии (кроме ячеистого бетона) принимают равным 3-4 образца (в дальнейшем, при испытании, расчет средней прочности в серии ведется по двум или трем наибольшим значениям показателя прочности, соответственно).

6.При изготовлении нескольких серий образцов, предназначенных для определения прочностных характеристик бетона в различном возрасте, все образцы следует изготавливать из одной пробы бетонной смеси и уплотнять их в одинаковых условиях. Отклонения между собой значений средней плотности бетона отдельных серий и средней плотности отдельных образцов в каждой серии к моменту их испытания не должны превышать 50 кг/м 3 . При несоблюдении этого требования результаты испытаний не учитываются.

7. Перед испытанием образцы визуально осматривают на предмет наличия дефектов в виде трещин, сколов ребер, раковин и инородных включений. Образцы, имеющие трещины, сколы ребер глубиной более 10 мм, раковины диаметром более 10 мм и глубиной более 5 мм (за исключением крупнопористого бетона), а также следы расслоения и недоуплотнения бетонной смеси, испытанию не подлежат.

8. Количество серий образцов , которое необходимо изготовить для контроля прочности бетона в проектном возрасте (28 суток), согласно требований ГОСТ 18105, регламентируется п. 5.2. выше названного ГОСТ.

9. При входном контроле (контроль производителя бетонной смеси) образцы бетона надо хранить в нормальных условиях (температура 20±3°С, относительная влажность воздуха 95±5%). Контрольные образцы бетона, изготовленные для приемочного контроля (контроль и оценка партий бетона уложенного в монолитные конструкции) надо хранить в условиях, согласно регламенту или другой технической документации на производство данных железобетонных конструкций.

10. Оценка прочности бетона при испытании кубов-образцов производится либо с учетом коэффициента вариации по схеме А, Б либо без его учета -схема Г (ГОСТ 18105, п.4.4).

4. Отбор кернов. Определение прочности бетона по кернам, отобранным из конструкций

Отбор кернов осуществляют с целью определения прочности бетона конструкции и визуального осмотра выбуренных образцов.

Испытания данным методом предназначены для определения класса бетона испытанных конструкций по прочности, и включает в себя следующие этапы.

1. Отбор кернов (выбуривание бетонных кернов) из конструкции на стройплощадке.

Отбор кернов из бетона конструкции производится с помощью установки для алмазного бурения типа D.Bender. Отсутствие арматуры контролируется цифровым детектором DMF 10 Zoom PROFESSIONAL. Количество и места отбора проб определяется по желанию Заказчика, с учетом требований ГОСТ 28570 (п.1.2 и 1.3). Схема расположения участков отбора образцов приводится в техническом отчете.

2. Подготовка образцов к испытаниям (из отобранных кернов).

Для определения физико-механических характеристик бетона из отобранных кернов подготавливают образцы-цилиндры в соответствии с ГОСТ 28570«Бетоны. Методы определения прочности по образцам, отобранным из конструкций» и ГОСТ 10180 «Бетоны. Методы определения прочности по контрольным образцам».

Выбуренный бетонный керн с помощью камнерезательной установки распиливают на образцы-цилиндры.

Количество образцов-цилиндров зависит от диаметра исходного керна, и варьируется от двух до четырех.

Для торцевания (то есть обработке керна с целью придания ему правильных геометрических размеров для испытания) используется специальный станок для торцевания кернов. Также, выравнивать торцы можно вручную путем нанесения выравнивающего слоя, в соответствии с методикой Приложения ГОСТ 28570, причем в качестве выравнивающих составов можно использовать эпоксидные композиции, цементное тесто, цементно-песчаные растворы.

После изготовления образцы-цилиндры выдерживаются в лабораторных условиях по ГОСТ 28570 (п.4.1.) в течение 6 дней.

3. Испытания образцов-цилиндров на прочность при сжатии.

Перед испытаниями образцы-цилиндры бетона осматриваются на наличие дефектов в виде трещин, сколов ребер, раковин и инородных включений, а так же следов расслоения и недоуплотнения бетонной смеси. В случае наличие таких дефектов как трещины, сколы, следы расслоения и недоуплотнения бетонной смеси – образцы бракуются. Остальные дефекты (раковины и т. д.) не должны превышать допустимых величин по ГОСТ 10180.

Перед испытанием образцы замеряют, взвешивают и испытывают на прессе. Полученные данные систематизируют в таблицу, выводя среднюю прочность по каждому керну (участку бетона конструкции).

5. Неразрушающий контроль бетона

В настоящее время, при контроле прочности бетона, все большее распространение, получают методы неразрушающего контроля. Методы неразрушающего контроля бетона — это, в первую очередь, методы механического и ультразвукового контроля.

Неразрушающий контроль бетона проводится по ГОСТ 22690 (механические методы) и ГОСТ 17624 и (ультразвуковой метод).

При контроле прочности бетона монолитных конструкций в проектном возрасте, проводят сплошной неразрушающий контроль прочности бетона всех конструкций контролируемой партии.

При контроле прочности бетона монолитных конструкций в промежуточном возрасте методами неразрушающего контроля испытывают не менее одной конструкции каждого вида (плита, стена, колонна и т.д.) из контролируемой партии.

Число контролируемых участков должно быть не менее:

  • трех на каждую захватку для плоских конструкций (перекрытия, стены)
  • одного на 4 м длины для каждой линейной горизонтальной конструкции (балка, ригель)
  • шести на каждую линейную вертикальную конструкцию (колонна, пилон)

Общее число участков измерений для расчета характеристик однородности прочности бетона партии конструкций должно быть не менее 20.

За единичное значение прочности бетона при неразрушающем контроле принимают среднюю прочность бетона контролируемого участка или зоны конструкции, или части монолитной или сборно-монолитной конструкции.

  • партия монолитных конструкций — часть, одна или несколько монолитных конструкций, изготовленных за определенное время
  • захватка — объем бетона монолитной конструкции или ее части, уложенный при непрерывном бетонировании одной или нескольких партий БСГ за определенное время
  • текущий коэффициент вариации прочности бетона — коэффициент вариации прочности бетона в контролируемой партии конструкций по схеме В

Число измерений, проводимых на каждом контролируемом участке конструкции определяются по ГОСТ 17624, ГОСТ 22690.

Прочность бетона определяют по предварительно установленным градуировочным зависимостям между прочностью бетона, полученной прямым разрушающим (выбуривание бетонных кернов, испытание кубов-образцов) или неразрушающим (отрыв со скалыванием) методами и косвенными характеристиками прочности при неразрушающем контроле (упругий отскок, ультразвук).

Методы неразрушающего контроля прочности (упругий отскок, ударный импульс отрыв со скалыванием, ультразвуковое прозвучивание) выбирают исходя из предполагаемых предельных значений прочности испытываемых конструкций.

К косвенным методам неразрушающего контроля прочности бетона относятся следующие методы:

ПРИБОРЫ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ БЕТОНА

С 1988 года наша компания разрабатывает и производит приборы для неразрушающего контроля бетона и для других видов строительной диагностики. Благодаря накопленному опыту и собственному производству, оснащённому передовым оборудованием, мы обеспечиваем высокое качество выпускаемых приборов. Дополнительную проверку продукция проходит в испытательной лаборатории предприятия.

Электронный склерометр (Измеритель прочности бетона)

Измеритель прочности (дефектоскоп) строительных материалов

Измеритель прочности (дефектоскоп) строительных материалов

Измеритель прочности бетона (отрыв со скалыванием)

Измеритель прочности методом скола ребра

Ультразвуковой прибор для контроля прочности

Ультразвуковой прибор (моноблок)

Ультразвуковой прибор с визуализацией (дефектоскоп)

Малогабаритные испытательные прессы

Динамометры

В современных методах обеспечения безопасности и качества строительных процессов значительное место занимает неразрушающий контроль. Важной особенностью применения приборов неразрушающего контроля бетона и других строительных материалов является возможность длительных, многолетних наблюдений за состоянием объекта с минимальным воздействием на сам объект.

Применение приборов неразрушающего контроля

Оборудование неразрушающего контроля используют для:

  • своевременного обнаружения отклонений свойств строительных материалов от заданных значений;
  • выявления неявных и внутренних дефектов строительных конструкций;
  • обследования технического состояния построенных зданий и сооружений;

Методы неразрушающего контроля

Основные методы неразрушающего контроля:

  • ультразвуковые и акустические методы;
  • измерение прочности методом ударного импульса и отрыва со скалыванием;
  • тепловой контроль;
  • электромагнитные методы;
  • виброизмерения;
  • вихретоковые методы и т.д.

Неразрушающий контроль бетона в строительстве и его специфика

В тех или иных ситуациях наиболее уместными будут различные методы неразрушающего контроля бетона, поскольку каждый из них имеет собственную специфику. Так, акустические методы незаменимы при определении пустот, трещин и других дефектов целостности изделия, а магнитные и вихретоковые – лучше всего подходят для работы с элементами стальных конструкций. Тепловой контроль оценивает наличие дефектов структуры при помощи определения температурного поля объекта.

В современном строительстве наиболее востребованы приборы неразрушающего контроля бетона, которые позволяют оперативно, на месте нахождения объекта определить состояние бетона, его прочность, выявить наличие трещин и пустот.

Благодаря простоте замеров метод ударного импульса является одним из самых распространенных для контроля прочности бетона, он применяется для определения класса бетона и измерения прочности его поверхностных слоёв. Неразрушающий ультразвуковой контроль бетона позволяет определить качество и прочность бетонных и кирпичных конструкций, установить наличие трещин и их глубину. Компания «Интерприбор» предлагает Вашему вниманию большой ассортимент приборов неразрушающего контроля бетона и других строительные материалов. Ультразвуковой или любой другой измеритель прочности бетона Вы можете купить, связавшись с нашими менеджерами или оформив заказ с помощью корзины на сайте.

Преимущества приборов неразрушающего контроля компании «Интерприбор»

Приборы неразрушающего контроля бетона от компании «Интерприбор» имеют следующие преимущества:

  • высокая функциональность;
  • портативность;
  • широкий диапазон измерений;
  • современное программное обеспечение.

Оборудование неразрушающего контроля бетона и других строительных материалов может быть дополнительно укомплектовано датчиками, кабелями, кофрами и т.д. (допкомплектации представлены в описании конкретного прибора) в соответствии с потребностями заказчика.

Некоторое из представленного оборудования неразрушающего контроля может быть доработано под индивидуальные требования заказчика.

Понравилась статья? Поделиться с друзьями:
Строительство и ремонт
Мы используем cookie-файлы для наилучшего представления нашего сайта. Продолжая использовать этот сайт, вы соглашаетесь с использованием cookie-файлов.
Принять
Отказаться